STM32采集声音/噪音传感器数据测试程序: 1、使用杜邦线连接声音传感器到开发板(声音传感器VCC连接开发板5V,声音传感器GND连接开发板GND,声音传感器OUT连接开发板PB6); 2、下载程序后,制造声音达到声音传感器有效分贝时,开发板上用户指示灯LD2(PB9引脚)亮;反之,开发板用户指示灯LD2灭。 3、代码使用KEIL开发,当前在STM32F103C8T6运行,如果是STM32F103其他型号芯片,依然适用,请自行更改KEIL芯片型号以及FLASH容量即可。 4、软、硬件技术服务:349014857@qq.com;
2024-07-30 10:57:55 4.69MB stm32 源码软件 arm
1
BLDC无刷直流电机和PMSM永磁同步电机 基于stm32F1的有传感器和无传感驱动 直流无刷电机有传感器和无传感驱动程序, 无传感的实现是基于反电动势过零点实现的,有传感是霍尔实现。 永磁同步电机有感无感程序,有感为霍尔FOC和编码器方式, 无感为换滑模观测器方式。 有原理图和文档 可供学习参考 程序有详细注释。
2024-07-20 18:17:55 449KB stm32
1
智能小车传感器与转向关系(5个传感器)mixly巡线程序
2024-07-17 18:37:02 53KB
1
无线传感器网络(Wireless Sensor Networks, WSNs)是一种由大量微型传感器节点组成的自组织网络,它们通过无线通信方式收集和传递环境或特定区域的数据。这些节点通常配备有限的能量资源,因此在设计路由协议时,节能是至关重要的。本文主要探讨的是基于能量和距离的WSN分簇路由协议,这是当前研究的热点。 WSN路由协议主要有两种类型:平面路由协议和层次路由协议。平面路由协议通常简单,但可能不适用于大规模网络,因为它可能导致大量的通信开销。相比之下,层次路由协议,特别是基于簇结构的协议,通过将网络节点划分为多个簇,每个簇有一个簇头,可以有效降低通信能耗,延长网络寿命。簇头负责收集簇内节点的数据并转发至基站,从而减少了节点间的直接通信,降低了能量消耗。 LEACH(Low-Energy Adaptive Clustering Hierarchy)协议是WSN中最著名的分簇路由协议之一。在LEACH中,节点通过随机选择的方式竞争成为簇头,簇头的选举概率随着轮次进行动态调整,以确保簇头负载均衡。然而,LEACH协议存在簇头分布不均和无法保证簇负载平衡的问题。 EECS(Energy Efficient Clustering Scheme)协议是对LEACH的一种改进,它引入了一个新的通信代价公式,考虑了节点到簇头的距离和簇头到基站的距离,以优化能量消耗。此外,EECS协议还确保了每个簇的负载均衡,从而提高了网络生命周期。实验表明,EECS相对于LEACH能显著提高网络的生存时间。 尽管EECS在一定程度上解决了LEACH的问题,但它仍然存在簇头分布漏洞和未充分考虑簇头剩余能量的问题。为解决这些问题,文章提出了ADEECS(Advanced EECS)协议。ADEECS引入了竞争延迟的方法来选举簇头,以避免簇头分布漏洞,并在成簇阶段考虑了簇头的剩余能量,以防止能量耗尽过快。此外,它还采用了可变发射功率的无线传输能量消耗模型,允许节点根据需要调整发射功率,进一步优化能量利用。 基于能量和距离的无线传感器网络分簇路由协议旨在通过高效分簇和智能的数据传输策略,实现网络的长期稳定运行。这些协议通过优化能量消耗,平衡簇头负载,以及考虑节点间距离,提高了WSNs的整体性能和生存时间,使其在各种应用领域,如环境监测、军事监控和医疗保健中,具有广泛的应用潜力。
2024-07-14 14:55:39 87KB 技术应用 网络通信
1
主要分析了LEACH协议、EEUC协议、DEBUC协议。其中DEBUC协议是对EEUC协议的改进。这3个协议各有优缺点,应该根据实际情况来选择合适的协议。这些协议的实现过程可以分为初始化阶段和数据传输阶段。各个协议的两个阶段的实现过程都有很大的差异。简述了PEGASIS协议,它是在LEACH的基础上进行改进的基于“链”的路由算法。这些协议是研究无线传感器网络的基础。
2024-07-14 14:18:38 78KB 路由协议 无线传感器 技术应用
1
ATLAS螺丝枪/扭矩控制器 开放协议,中文资料 部分内容如下: 1.控制器设定开放协议可用 2.软件通过IP地址与4545默认端口号确认相应控制器 3.软件发送代码MID0001请求与拧紧枪通讯通讯 4.拧紧枪反馈代码MID0002允许通讯,软件与拧紧枪连接成功 4.1拧紧枪反馈代码MID0004表示软件代码发送错误 4.2拧紧枪在反馈代码MID0002后会保留15秒连线状态,超时将断开连接,反馈MID0003 5.连接成功后,请每隔10秒循环发送心跳代码MID9999保持连接在线 5.1心跳发送后拧紧枪会反馈MID9997已告知心跳发送成功 6.若使用开放协议选择程序,在选择程序前需要做程序上载,
2024-07-09 11:36:39 1.12MB 网络协议 开放协议 扭矩传感器
1
在本文中,我们将深入探讨QMA8658A六轴姿态传感器的数据获取算法,以及如何利用这款传感器在嵌入式系统中实现精准的运动跟踪和姿态控制。QMA8658A是一款集成了3轴加速度计和3轴陀螺仪的高性能传感器,它能有效地提供实时的三维加速度和角速度数据,这对于无人机、机器人以及智能手机等领域的应用至关重要。 我们需要了解QMA8658A的基本工作原理。加速度计负责测量物体在三个正交轴上的线性加速度,而陀螺仪则检测物体的角速度,这在确定物体的旋转和姿态变化时尤为关键。传感器内部的校准过程确保了测量数据的准确性,减少了零点偏移和灵敏度误差。 在嵌入式系统中,我们通常使用C语言来编写与QMA8658A交互的驱动程序。C语言因其高效性和跨平台性,成为嵌入式开发的首选。KEIL MDK(Microcontroller Development Kit)是一个常用的嵌入式开发环境,它支持C语言编程,并且包含了一系列工具,如编译器、调试器和库函数,便于开发者构建和测试应用程序。 数据获取的过程涉及以下步骤: 1. 初始化:通过I2C或SPI接口与QMA8658A建立通信连接,设置传感器的工作模式,如采样率、数据输出格式等。 2. 数据读取:定期从传感器的寄存器中读取加速度和角速度数据。这通常需要一个中断服务程序,当传感器准备好新数据时触发中断。 3. 数据处理:接收到的原始数据可能包含噪声和偏置,需要进行滤波处理,如低通滤波或卡尔曼滤波,以提高数据的稳定性。同时,由于传感器可能会存在漂移,还需要定期校准。 4. 姿态解算:结合加速度和角速度数据,可以使用卡尔曼滤波、互补滤波或Madgwick算法等方法解算出物体的实时姿态,如俯仰角、滚转角和偏航角。 5. 应用层处理:将解算出的姿态信息用于控制算法,比如PID控制器,以实现对无人机的稳定飞行或者机器人的精确运动。 6. 错误检查与恢复:在程序运行过程中,要持续监控传感器的状态,如超量程、数据错误等,一旦发现问题,及时采取措施恢复或报警。 QMA8658A六轴姿态传感器在嵌入式系统中的应用涉及到硬件接口设计、数据采集、滤波处理、姿态解算等多个环节。理解并掌握这些知识点,对于开发高效的运动控制解决方案至关重要。通过KEIL MDK这样的工具,开发者可以便捷地实现这些功能,从而充分利用QMA8658A的潜力,为各种应用带来高精度的运动感知能力。
2024-07-08 16:55:03 11KB keil
1
温度传感器是一种重要的物理量检测设备,广泛应用于各个领域,如工业生产、环境监控、家用电器等。本设计重点讨论的是PT100铂电阻温度传感器的设计,它以其高稳定性、良好的线性特性以及宽广的工作温度范围(-200℃至650℃)而受到青睐。本电路设计中,PT100被限制在-19℃至500℃的温度区间内工作。 电路设计主要包括两个部分:传感器前置放大电路和单片机A/D转换及显示、控制、软件非线性校正。前置放大电路通过简单的接法,即通过3K92电阻将PT100连接到系统5V电源,虽然这种接法可能导致非线性问题,但由于有单片机的软件校正功能,可以简化硬件设计。 在PT100的工作区间,其阻值会随温度变化,例如在0℃时为100.00Ω,500℃时为280.9Ω。利用串联分压原理,可以计算出不同温度下的输出电压。通过单片机的10位A/D转换器,最大显示值为1023,为了确保在500℃时显示500字,需要对原始输出电压进行放大。放大倍数计算公式为(500/1023 * Vcc)/传感器两端电压,其中Vcc为系统供电电压(5V)。实际计算时,由于500℃对应的实际A/D转换值为450,所以放大倍数约为10.47。电路采用了两级运算放大器,后级固定放大5倍,前级放大约为2.09倍,通过精密微调电位器进行细调,确保准确放大。 在温度测量电路中,通常需要“调零”和“调满度”电位器,但本设计中仅使用了一个“调零”电位器,因为一旦“零度”调整准确,整个工作范围内的显示都将正确,包括满度时的最大显示。单片机程序会自动减掉“零度”值,从而得到有效数值。 对于供电电压变化的影响,只要在一定范围内(如20%),由于单片机A/D基准与供电电压同步变化,测量准确度不会受到影响。信号经传感器前置放大电路输出后,进入HT46R23单片机的A/D转换端口,通过软件非线性校正,将输入信号根据不同的温度段乘以相应的补偿系数,以接近理论值。补偿系数表仅展示了部分数据,实际应用中需要覆盖整个温度范围。 本设计巧妙地结合了硬件和软件,通过合理选择放大倍数、精确的电位器调整和软件非线性校正,实现了PT100温度传感器的高效、准确测量。这样的设计方案不仅简化了硬件结构,还提高了系统的稳定性和精度。
2024-07-08 16:28:36 107KB 温度传感器的设计
1
基于PLL的三相永磁同步电机无速度传感器仿真。
2024-07-05 17:01:37 37KB simulink 无速度传感器
1、程序 2-原理图和PCB 3-原理图视频讲解 4-相关软件下载和教程 5-颜色对照软件 6-制作详解 7-焊接过程照片 8-芯片资料 9-使用操作说明 10-实物照片 11-元件清单 12-开题报告 13-任务书 14-参考论文 15-STM32视频教程 16-毕设答辩技巧 【必读】论文查重原理与规避高重复率方法 常见问题解答 常用小知识 答辩常见问题合集 打开原理图的方法
2024-07-05 14:33:23 107.86MB stm32
1