总结目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(FeedForwardDeepNeuralNetwork)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮。长短时记忆网络(LSTM,LongShortTermMemory)可以说是目前语音识别应用最广泛的一种结构,这种网络能够对语音的长时相关性进行建模,从而提高识别正确率。双向LSTM网络可以获得更好的性能,但同时也存在训练复杂度高、解码时延高的问题,尤其在工
1
超简明网课的CNN经典代码,实现了LeNet-5结构,相关博文链接可以参考如下:「https://blog.csdn.net/u013684446/article/details/105575942」。代码质量高,下载后直接运行即可
2021-10-08 11:10:17 17.23MB 人工智能 卷积神经网络
1
基于卷积神经网络(CNN)的无人车避障方法.pdf
matlab精度检验代码通过卷积神经网络(CNN)检测黑素瘤 该项目的目的是创建一个卷积神经网络(CNN),将皮肤病变的皮肤镜图像分类为黑色素瘤或非黑色素瘤。 皮肤镜图像是使用显微镜和照明的皮肤图像。 动机 黑色素瘤是最致命,最具侵略性的皮肤癌。 预计到2018年,皮肤黑色素瘤将在美国造成9,320例死亡。 但是,如果黑色素瘤是早期发现的,则5年生存率约为99%。 因此,在转移之前,黑素瘤的早期检测对于患者的生存至关重要。 黑色素瘤是由位于皮肤表皮中的黑色素生成细胞(黑色素细胞)的快速生长演变而来的。 尽管只能通过活检才能确定黑色素瘤,但通常使用助记符“ ABCDEs”在现有或新痣(通常称为“痣”)中进行视觉识别: 不对称–病变形状不规则或不对称。 边框–边缘不规则且难以定义。 颜色–存在不止一种颜色或颜色分布不均。 直径–直径大于6毫米。 不断发展–病变的颜色和大小随时间而改变。 建于 TensorFlow 凯拉斯 Python MATLAB的深度学习工具箱 楷模 为此项目探索了两种CNN架构: 使用Keras,TensorFlow和Python从零开始构建的简单CNN。 使用MAT
2021-09-29 21:18:01 21.03MB 系统开源
1
无人驾驶的感知部分作为计算机视觉的领域范围,也不可避免地成为CNN发挥作用的舞台。本文是无人驾驶技术系列的第八篇,深入介绍CNN(卷积神经网络)在无人驾驶3D感知与物体检测中的应用。 卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种适合使用在连续值输入信号上的深度神经网络,比如声音、图像和视频。它的历史可以回溯到1968年,Hubel和Wiesel在动物视觉皮层细胞中发现的对输入图案的方向选择性和平移不变性,这个工作为他们赢得了诺贝尔奖。时间推进到上世纪80年代,随着神经网络研究的深入,研究人员发现对图
1
介绍卷积神经网络基本原理及典型的卷积神经网络模型,可供感兴趣的本科生及研究生学习,特别适合交流汇报
2021-09-27 10:54:15 4.48MB 深度学习 卷积神经网络 CNN
1
卷积神经网络用到的数据集图片、训练好的权重等参数文件
2021-09-25 08:33:35 822.47MB CNN 深度学习 循环神经网络 猫狗图片
1
深度学习 该文件夹包含我的各种AI和机器学习项目的深度学习模型。 长短期记忆(LSTM)卷积神经网络(CNN)ResNet50
1
3D_CT_分类 此示例将显示构建3D卷积神经网络(CNN)以预测计算机断层扫描(CT)扫描中病毒性肺炎的存在所需的步骤。 2D CNN通常用于处理RGB图像(3通道)。 3D CNN只是3D等效项:它以3D体积或2D帧序列(例如CT扫描中的切片)为输入,因此3D CNN是学习体积数据表示的强大模型。
2021-09-20 10:21:10 360KB JupyterNotebook
1
这是一个相对简单但又十分吸引人的机器学习项目。 在 Python 中使用卷积神经网络构造模型,可以识别手势并将其转换为机器上的文本。 该项目存储库的作者用 Tensorflow 和 Keras 共同搭建了 CNN 模型,他特别详细地说明了他是怎么创建这个项目的,以及每一步是怎么进行的。
2021-09-10 19:53:54 174MB 机器学习 CNN
1