道路车辆检测图像数据集_含21种各种不同的车辆类型+3004张高质量真实场景道路车辆图片+已做YOLO格式标注_可用于深度学习算法训练
2024-11-21 15:24:43 116.38MB 数据集 目标检测 车辆检测
1
● 数据集介绍:城市道路行驶车辆检测数据集,真实监控场景高质量图片数据,涉及场景丰富,比如城市道路快速行驶车辆、城市道路慢速行驶车辆、城市道路密集行驶车辆、城市道路夜间低光行驶车辆数据等。数据集标注标签划分为 "car"、"van"、"bus"、"others" 四个类别; ● 适用实际项目应用:交通道路监控场景下驾驶车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充; ● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练; ● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考; 注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式! ### 目标检测-城市道路行驶车辆检测数据集解析 #### 数据集概述 该数据集主要针对城市道路上的车辆进行目标检测任务,包含了1000张真实监控场景下的高质量图像,涵盖了各种复杂的驾驶环境,例如快速行驶、慢速行驶、密集行驶以及夜间低光条件下行驶的车辆数据。这些丰富的场景不仅有助于提升模型在复杂环境中的鲁棒性,还能够为交通道路监控等实际项目提供强有力的数据支撑。 #### 数据集类别与应用场景 数据集中将车辆标注为四个类别:“car”、“van”、“bus”和“others”,这样的分类方式能够满足大多数交通监控场景下的需求。此外,该数据集还可以作为其他监控场景中通用车辆检测数据集的补充,进一步增强模型对不同车型的识别能力。 #### 标注工具与格式 该数据集采用了`labelimg`标注软件进行标注,这是一款开源且易于使用的图形界面标注工具,它支持多种标注格式,包括VOC(xml)、COCO(json)和YOLO(txt)。这些格式都是目前主流的目标检测算法(如YOLO系列)所支持的标准数据格式,可以直接用于模型训练而无需额外的数据转换处理,大大提高了研究效率。 #### 训练示例与支持平台 数据集还附带了YOLOv8和YOLOv5的一键训练脚本,这些脚本支持GPU(GPUs)、CPU以及Mac(M芯片)等多种硬件平台,极大地扩展了模型训练的灵活性。无论是使用高性能GPU加速训练过程,还是在没有GPU的情况下使用CPU进行训练,亦或是使用最新的Apple M系列芯片设备,用户都能够轻松上手并获得满意的训练效果。此外,博主还提供了自己的训练结果日志供学习者参考,帮助理解模型的表现情况,并进行相应的调整优化。 #### 数据集获取 为了方便下载,该数据集被托管在百度网盘上,具体下载方式如下: - 链接: [https://pan.baidu.com/s/1iyZHb0ygnar1d8LwtAEhKw](https://pan.baidu.com/s/1iyZHb0ygnar1d8LwtAEhKw) - 提取码: 6666 #### 数据集使用建议 1. **预处理阶段**:在使用数据集之前,建议先对数据进行预处理,包括但不限于数据清洗、尺寸统一、灰度图转RGB图等操作,以确保输入数据的质量。 2. **模型选择**:根据具体的任务需求和硬件条件,选择合适的模型版本进行训练。例如,在资源有限的情况下,可以选择YOLOv5n等轻量级模型;而在追求更高精度的应用场景中,则可以考虑使用YOLOv8等更复杂的模型。 3. **训练技巧**:在模型训练过程中,可以尝试不同的超参数设置、数据增强策略以及早停法等技术,来提高模型性能。 4. **评估与调优**:训练完成后,通过准确率、召回率等指标评估模型效果,并根据实际情况进行调整优化。 这个城市道路行驶车辆检测数据集不仅提供了丰富的标注数据,还配备了完善的训练脚本和支持文档,对于想要从事交通监控领域或车辆检测研究的人来说,是一个非常宝贵的学习资源。
2024-11-21 14:50:49 4.33MB YOLO COCO
1
● 数据集介绍:城市道路行驶车辆检测数据集,真实监控场景高质量图片数据,涉及场景丰富,比如城市道路快速行驶车辆、城市道路慢速行驶车辆、城市道路密集行驶车辆、城市道路夜间低光行驶车辆数据等。数据集标注标签划分为 "car"、"van"、"bus"、"others" 四个类别; ● 适用实际项目应用:交通道路监控场景下驾驶车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充; ● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练; ● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考; 注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式! ### 目标检测-城市道路行驶车辆检测数据集解析 #### 数据集概述 该数据集主要针对城市道路中行驶的各类车辆,旨在为交通监控、智能驾驶等应用场景提供丰富的图像资源与标注信息。数据集共包含10,000张高质量的真实监控场景图像,并覆盖了多种行车情况,例如快速行驶、慢速行驶、密集行驶以及夜间低光环境下的车辆。这些场景的多样性和复杂性对于提升模型的泛化能力和鲁棒性至关重要。 #### 类别划分 数据集中的车辆被细分为四个类别:“car”(轿车)、“van”(厢式车)、“bus”(公交车)以及“others”(其他)。这种细致的分类有助于更准确地识别不同类型的车辆,从而更好地服务于实际应用需求。例如,在交通管理中,区分不同类型车辆的能力对于制定合理的交通策略至关重要。 #### 标注工具与格式 所有图像均使用`labelimg`这一强大的标注工具进行了精细标注,确保了数据的质量。此外,为了方便用户使用,提供了三种常见的目标检测数据集格式:VOC(xml)、COCO(json)和YOLO(txt)。这三种格式几乎涵盖了目前主流的目标检测框架所需的数据格式,大大降低了数据预处理的工作量。 - **VOC**:这是一种广泛使用的数据集格式,主要用于Pascal VOC挑战赛。它使用XML文件来存储每个图像的元数据,包括对象的位置信息。 - **COCO**:Common Objects in Context(COCO)格式是一种更现代且功能更全面的数据集格式,适用于多个计算机视觉任务,如物体检测、分割等。COCO格式使用JSON文件来组织数据。 - **YOLO**:You Only Look Once(YOLO)格式非常适合快速训练和部署,因为它简单直观,仅使用文本文件来表示边界框坐标和类别的索引。 #### 训练支持 数据集还附带了针对YOLOv8和YOLOv5的一键训练脚本,这极大地简化了训练过程。支持多平台(GPU、CPU和Mac M芯片),使得不同硬件条件下的用户都能轻松进行模型训练。此外,还提供了训练日志供参考,这对于理解训练过程中的问题和优化模型非常有帮助。 #### 数据集划分脚本 数据集还包含了一个用于划分数据集的脚本。这个脚本可以将数据集自动划分为训练集、验证集和测试集,这是机器学习项目中非常重要的一步。通过合理划分数据集,可以有效地评估模型性能并避免过拟合。 #### 应用场景 此数据集特别适合应用于以下几种场景: - **交通监控**:监测道路上的车辆流量,识别异常行为(如闯红灯、逆行等)。 - **智能驾驶辅助系统**:帮助自动驾驶汽车识别周围的车辆类型和位置,提高驾驶安全性。 - **城市管理**:统计特定时间段内的车辆类型分布,为城市规划提供数据支持。 #### 获取方式 数据集可通过百度网盘链接下载:[链接](https://pan.baidu.com/s/1CJ-3SK3heWHzlVHb_PMKHA),提取码为6666。需要注意的是,由于数据集资源超过1GB,因此提供的下载文件为PDF格式,其中包含了数据集的基本情况介绍及获取完整数据集的方式。 该数据集以其丰富的场景覆盖、高质量的图像和标注、灵活的数据格式以及便捷的训练支持,为从事车辆检测相关研究或应用的开发者提供了一套非常有价值的数据资源。
2024-11-21 14:48:48 4.33MB 车辆检测 YOLO COCO
1
此为合成孔径雷达动目标检测的相关学习资料,包括经典的SAR-GMTI算法原理的介绍——DPCA,ATI等。
2024-11-21 09:30:35 1.84MB
1
数据集-目标检测系列- 豹子 猎豹 检测数据集 leopard - DataBall 标注文件格式:xml 解析脚本地址:https://gitcode.com/DataBall/DataBall-detections-100s/overview 脚本运行方式: * 设置脚本数据路径 path_data * 运行脚本:python demo.py 样本量: 150 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2024-11-01 19:04:55 8.87MB 数据集 目标检测
1
内容概要:本文介绍了基于YOLOv11的人员溺水检测告警监控系统,详细描述了项目的实施背景、特点及相关参考资料等内容。具体实现上,通过使用YOLOv11模型对从摄像头获得的视频流实现实时的人类溺水监测,同时提供有友好的GUI用于交互操作,在出现异常情况后能够及时做出反应并通过音频或短信的方式发出警告提示。 适合人群:专注于水域安全的专业人员和技术开发者。 使用场景及目标:适用于需要实时监视溺水事故的各种场景,包括游泳池、湖滨及海岸线等等。 阅读建议:为了更好地掌握该技术的设计思路及其应用场景的具体细节,鼓励深入探讨与实践相关内容。
2024-10-31 00:55:35 48KB 深度学习 目标检测
1
ultralytics yolo 训练及推理自定义人脸关键点数据 - python 实现 ultralytics yolo 训练自定义人脸关键点训练和验证数据集 数据集格式:yolo 训练集数量:3295 验证集数量:120 类别:人脸,1类 类别号:0 关键点:5个,包括左眼,右眼,鼻尖,左嘴唇边界点,右嘴唇边界点。
2024-10-22 15:12:20 327.2MB 数据集 yolo 人脸关键点检测 目标检测
1
在IT领域,动态规划是一种强大的算法,用于解决最优化问题,尤其在面对具有重叠子问题和最优子结构特征的问题时。在这个特定的项目中,我们关注的是如何使用Python编程语言来解决“武器目标分配问题”。这是一个典型的组合优化问题,其中涉及到在有限资源下将武器有效地分配给多个目标,以最大化某种效益或最小化损失。 动态规划的基本思想是将复杂问题分解为更小的子问题,然后逐个解决这些子问题,最终组合出原问题的解。这种策略的关键在于存储和重用子问题的解决方案,避免了重复计算,提高了效率。 在武器目标分配问题中,我们可以设定一个二维数组或者矩阵,其中行代表武器,列代表目标,每个元素表示使用某一武器打击某一目标的效益或成本。动态规划的过程通常包括以下几个步骤: 1. **定义状态**:确定状态变量,如在这个问题中,状态可能是已经分配的武器和目标的组合。 2. **状态转移方程**:建立状态之间的转移关系,即如何从一个状态过渡到另一个状态。这通常涉及到选择当前状态下最佳的决策。 3. **初始化边界条件**:设定起始状态的值,通常是问题的边界条件。 4. **填充值**:自底向上地填充状态表格,每一行或每一列代表一个武器或目标的决策过程。 5. **求解最优解**:通过回溯填充的表格,找到最优的武器与目标分配。 在Python中,我们可以使用二维列表或其他数据结构来实现这个表格,并利用循环结构进行填充。例如,可以使用两个嵌套的for循环遍历所有可能的武器目标组合,根据状态转移方程更新每个单元格的值。 此外,为了提高代码的可读性和复用性,可以封装这些步骤到一个函数中,可能还需要考虑如何处理特殊情况,如资源不足或目标被多个武器同时攻击的情况。 在提供的"Weapon-Target-Allocation-code"文件中,应该包含了具体的Python实现代码,你可以通过阅读和理解这段代码来深入学习这个问题的动态规划解决方案。这将帮助你掌握如何将理论知识应用于实际问题,并提升你的编程和算法设计能力。 动态规划算法在解决武器目标分配问题时,能够有效地找到最优解,其关键在于巧妙地构建状态和状态转移方程。通过Python实现,我们可以将复杂的数学模型转化为可执行的代码,这是计算机科学与工程领域中的一个重要技能。
2024-10-22 10:50:16 2.05MB python 动态规划
1
使用逆强化学习进行扫描路径预测 PyTorch的官方实施, (CVPR2020,口头) 我们提出了第一个逆向强化学习(IRL)模型,以学习人类在视觉搜索过程中使用的内部奖励功能和策略。 观察者的内部信念状态被建模为对象位置的动态上下文信念图。 这些地图是由IRL获悉的,然后用于预测多个目标类别的行为扫描路径。 为了训练和评估我们的IRL模型,我们创建了COCO-Search18,COCO-Search18是目前最大的高质量搜索注视数据集。 COCO-Search18有10位参与者在6202张图像中搜索18个目标对象类别中的每一个,进行了约300,000个目标定向注视。 当在COCO-Search18上进行训练和评估时,无论是在与人类搜索行为的相似性还是搜索效率方面,IRL模型在预测搜索注视扫描路径方面均优于基线模型。 如果您正在使用此作品,请引用: @InProceedings {
2024-10-17 19:21:36 20.31MB pytorch adversarial-networks cvpr2020
1
在计算机视觉领域,基于图像的目标检测与追踪是两个核心任务,它们在许多应用中发挥着重要作用,如自动驾驶、无人机导航、视频监控、人机交互等。在这个“基于图像的目标检测与追踪”压缩包中,我们可以预想包含了一系列相关资源,如论文、代码实现、教程文档等,帮助学习者深入理解这两个概念。 目标检测是计算机视觉中的关键环节,其目的是在图像中识别并定位出特定的对象。常用的方法有传统的基于特征匹配的算法,如Haar级联分类器和HOG(Histogram of Oriented Gradients)特征,以及深度学习模型,如YOLO(You Only Look Once)、SSD(Single Shot MultiBox Detector)和Faster R-CNN(Region-based Convolutional Neural Networks)。这些模型通过训练大量标注数据,学会了识别和定位不同类别的目标。例如,YOLO以其快速和准确而闻名,而Faster R-CNN则通过区域提议网络提高了检测精度。 目标追踪则是在目标检测的基础上,追踪一个或多个特定对象在连续帧之间的运动轨迹。经典的追踪算法有KCF(Kernelized Correlation Filter)和MIL(Multiple Instance Learning),而现代方法如DeepSORT和FairMOT则结合了深度学习技术,实现了对复杂场景中多目标的精确追踪。这些方法通常需要考虑光照变化、遮挡、目标尺度变化等因素,以保持追踪的稳定性。 在数字图像处理实习中,学生可能需要掌握基本的图像处理技术,如图像预处理(灰度化、直方图均衡化、滤波等)、特征提取以及目标表示。这些基础知识对于理解和实现目标检测与追踪算法至关重要。 基于STM32平台的学习,意味着这个项目可能涉及到硬件集成。STM32是一种常见的微控制器,常用于嵌入式系统,包括图像处理和计算机视觉应用。使用STM32进行目标检测与追踪,需要熟悉其GPIO、SPI、I2C等接口,以及如何将计算密集型算法优化到嵌入式平台上运行,可能需要涉及OpenCV库的移植和硬件加速技术。 压缩包中可能包含的文件可能有: 1. 论文:介绍最新的目标检测和追踪算法及其应用。 2. 实验代码:用Python或C++实现的各种检测和追踪算法,可能包括OpenCV库的调用。 3. 数据集:用于训练和测试模型的图像或视频数据,每个目标都有精确的边界框标注。 4. 教程文档:详细介绍如何理解和实施相关算法,以及在STM32平台上部署的步骤。 5. 示例程序:演示如何在STM32上运行目标检测和追踪算法的工程文件。 通过学习和实践这些内容,不仅可以掌握理论知识,还能提升实际操作能力,为未来在计算机视觉领域的工作打下坚实基础。
1