一个利用PSO粒子群优化算法训练BP神经网络的程序,在matlab环境中进行操作,代码简便可行。(The use of a PSO particle swarm optimization algorithm to train BP neural network procedures, operating in the MATLAB environment, the code is simple and feasible.)
2021-12-27 20:06:33 48KB pso
北极熊优化算法PBO的Python实现,对Ackley函数的寻优
2021-12-25 20:05:41 2KB 群优化算法 北极熊算法 python
针对Taylor算法进行TDOA定位时,其初始估计位置的误差易导致Taylor算法不收敛和定位精度差的问题,提出一种基于自然选择的线性递减权重粒子群优化(W-SPSO)与Taylor算法协同定位的方法。该方法先通过W-SPSO算法得到一个初始估计位置(x,y),再通过Taylor算法在(x,y)处进行迭代运算得到最终定位结果。不同噪声情况下的仿真结果显示:W-SPSO与Taylor算法协同定位方法对MS坐标估计值的均方差(RMSE)小于标准PSO(粒子群优化)、SelPSO(基于自然选择的粒子群优化算法)、W-SPSO、Taylor以及Chan五种算法的RMSE。因此,所提出的定位方法在保留了SelPSO算法求解精度和收敛性的基础上,同时提高了全局搜索能力,使其具有更高的定位精度和收敛性。
1
针对PSO在寻优过程容易出现“早熟”现象,提出了一种基于Sobol序列的自适应变异PSO算法(SAPSO)。该算法以积分控制粒子群算法(ICPSO)为基础,使用准随机Sobol序列初始化种群个体,并在算法过程中引入基于多样性反馈的Beta分布自适应变异来保持种群的多样性,避免陷入局部最优。仿真结果表明,SAPSO算法在求解复杂优化问题时优势明显,可以有效地避免算法陷入局部最优,在保证收敛速度的同时增强了算法的全局搜索能力。
2021-12-21 20:25:08 590KB 论文研究
1
粒子群优化算法的python实现
2021-12-21 18:10:27 136KB 群优化算法 机器学习 python
算法介绍 每个寻优的问题解都被想像成一只鸟,称为“粒子”。所有粒子都在一个D维空间进行搜索。 所有的粒子都由一个fitness function 确定适应值以判断目前的位置好坏。 每一个粒子必须赋予记忆功能,能记住所搜寻到的最佳位置。 每一个粒子还有一个速度以决定飞行的距离和方向。这个速度根据它本身的飞行经验以及同伴的飞行经验进行动态调整。
2021-12-20 14:57:39 2.62MB 粒子群优化 算法 解析
1
<html dir="ltr"><head><title></title></head><body>针对当前各种粒子群优化算法解决问题时存在的局限性, 提出一种基于混合策略自适应学习的粒子群优化算法(HLPSO). 该算法从收敛速度、跳出局部极值、探索、开发几个不同角度融合了4 种具有不同优势的变异策略,当面对不同形态的复杂问题时通过自适应学习机制选择出合适的策略来完成全局寻优. 通过对7 个标准测试函数的仿真实验并与其他算法相比较, 所得结果表明了所提出的算法具有较快的收敛速度、较高的精度以及很强的跳出局部极值的能力.</body></html>
1
群优化算法求解旅行商问题。内有代码有报告 1、理解蚁群优化算法的思想。 2、利用 Matlab 实现蚁群优化算法求解 TSP 问题。 3、分析算法中各种参数变化对计算结果的影响。 二、实验要求 1、打印程序清单。 2、绘制算法求解过程图。 3、记录多次运行算法的最优解。 4、比较算法在不同参数设置下的性能区别。 5、简要回答思考题。
2021-12-19 21:39:12 260KB 蚁群优化 旅行商
1
1、粒子群算法发展历史简介 由Kennedy和Eberhart于1995年提出. 群体迭代,粒子在解空间追随最优的粒子进行搜索. 简单易行 粒子群算法: 收敛速度快 设置参数少 由Kennedy和Eberhart于1995年提出. 群体迭代,粒子在解空间追随最优的粒子进行搜索. 简单易行 粒子群算法: 收敛速度快 设置参数少
2021-12-19 17:00:42 895KB 智能算法 优化算法
1
预测蛋白质功能是后基因组时代最具挑战性的问题之一,在大规模数据下采用高性能的功能预测算法能够节省大量的实验时间和成本。利用基于蛋白质相互作用网络的全局优化模型,提出了蛋白质功能预测的蚁群优化算法,算法在考虑全局模型的同时还利用了网络的先验信息,提高了搜索效率,仿真结果表明,蚁群优化算法能够有效对蛋白质功能进行预测,并且对蛋白质相互作用网络中的假阳性、假阴性数据具有较高的容错能力。
2021-12-17 22:23:05 348KB 自然科学 论文
1