内容概要:这篇文档详细讲解了PyTorch的入门与应用方法。首先简述了PyTorch作为现代深度学习框架的优势与应用场景。随后介绍了如何安装和配置PyTorch开发环境,涉及Python版本选择和相关依赖库的安装。接着解释了PyTorch中最核心的概念——张量,及其创建、操作和与Numpy的互转等知识点。自动求导部分讲述了计算图的构建、自动求导的工作原理及参数更新的流程。神经网络方面,则涵盖了自定义神经网络的建立,包括常见的层如全连接层、卷积层等,并介绍了常见损失函数(如均方误差、交叉熵)及优化器(SGD、Adam)。最后,通过CIFAR-10图像分类任务的实际操作案例,展示了如何从头到尾实施一个完整的机器学习项目,包括数据加载、模型设计、训练、评估等一系列流程。此外还提及了后续扩展学习方向以及额外的学习资源推荐。 适合人群:主要面向希望掌握PyTorch框架并在实践中理解深度学习技术的专业人士或爱好者。 使用场景及目标:适用于希望深入学习PyTorch并能够独立构建和训练模型的技术人员;目标是在实际工作中运用PyTorch解决复杂的深度学习问题。 阅读建议:本文档适合有一定编程经验且
2025-04-07 14:45:52 333KB 深度学习 PyTorch GPU加速 自动求导
1
该资源包含基于U-Net模型的医学图像分割任务完整代码及不同注意力机制(如SENet、Spatial Attention、CBAM)下的训练结果。资源实现了数据预处理、模型定义、训练与验证循环,以及结果评估与可视化,提供了详细的实验记录与性能对比(如Accuracy、Dice系数、IoU等关键指标)。代码结构清晰,易于复现和扩展,适用于医学图像分割研究和U-Net模型改进的开发者与研究者参考。 在人工智能领域,图像分割技术一直是一个备受关注的研究方向,特别是在医学图像分析中,精确的图像分割对于疾病的诊断和治疗具有重要的意义。ISIC(International Skin Imaging Collaboration)项目提供了大量的皮肤病医学图像,这对于研究和开发图像分割模型提供了宝贵的资源。UNet作为卷积神经网络(CNN)的一种变体,在医学图像分割领域表现出了优异的性能,尤其是它的结构特别适合小样本学习,并且能够捕捉图像的上下文信息。 本研究利用UNet模型对ISIC提供的皮肤病医学图像进行了分割,并在此基础上加入了注意力机制,包括SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等,以进一步提升模型性能。注意力机制在深度学习中的作用是模拟人类视觉注意力,通过赋予网络模型关注图像中重要特征的能力,从而提高任务的准确性。SENet通过调整各个特征通道的重要性来增强网络的表现力,而CBAM则更加细致地关注到特征的二维空间分布,为网络提供了更加丰富和准确的注意力。 研究结果表明,在引入了这些注意力机制后,模型的分割准确率达到了96%,这显著高于没有使用注意力机制的原始UNet模型。这样的成果对于医学图像的精确分割具有重要的意义,能够帮助医生更准确地识别和分析病灶区域,从而为疾病的诊断和治疗提供科学依据。 本资源提供了一套完整的医学图像分割任务代码,涵盖了数据预处理、模型定义、训练与验证循环、结果评估和可视化等关键步骤。代码结构设计清晰,方便开发者复现和对模型进行扩展,不仅对医学图像分割的研究人员有帮助,同时也对那些想要深入学习图像分割的AI爱好者和学生有着极大的教育价值。 通过对比不同注意力机制下的训练结果,研究者可以更深入地理解各种注意力机制对模型性能的具体影响。实验记录详细记录了各个模型的关键性能指标,如准确率(Accuracy)、Dice系数、交并比(IoU)等,这些都是评估分割模型性能的常用指标。通过这些指标,研究者不仅能够评估模型对图像分割任务的整体性能,还能够从不同维度了解模型在各个方面的表现,从而为进一步的模型优化提供指导。 这份资源对于那些希望通过实践来学习和深入理解医学图像分割以及U-Net模型改进的研究人员和开发人员来说,是一份宝贵的资料。它不仅包含了实现高精度医学图像分割模型的代码,还提供了如何通过引入先进的注意力机制来提升模型性能的实践经验。
2025-04-06 19:24:08 440.34MB UNet 注意力机制
1
内容概要:本文详细介绍了一个利用MATLAB实现的遗传算法(GA)优化BP神经网络的方法,专门面向多输入多输出系统的建模和预测任务。遗传算法以其全局搜索能力解决了BP神经网络容易陷入局部最优的问题,两者结合大大提升了学习速度和精度。文中阐述了BP神经网络和遗传算法的基本原理,并介绍了两者相结合的技术细节及其在MATLAB平台上的实现方式。特别指出的是,在实现过程中遇到了一些技术和理论上的挑战,并通过合理的参数调整和结构优化逐一攻克。 适合人群:具备基本编程技能以及对人工神经网络有一定了解的研究人员、工程师和技术爱好者,特别是关注于复杂系统和大数据分析的专业人士。 使用场景及目标:主要用于需要高效建模及精确预测的复杂多维系统中,比如系统控制、金融数据分析、医学诊断、图像识别等众多行业领域内的问题解决。目的是提高系统的自动化程度,改善预测准确率,并促进更广泛的智能化管理和服务应用。 其他说明:为了帮助读者更好地理解这一过程,文档还提供了详细的模型架构图示和具体的实例编码指导,从数据准备到最终的仿真结果显示全过程。并且强调了项目所具有的创新点,比如自定义参数设定、智能优化初始权重等特性,使得该方案在实际操作中有较强的灵活性和适用性。同时指出未来可以进一步探索更多元化的优化手段和技术融合可能性。
2025-04-05 09:07:05 32KB 遗传算法 BP神经网络 MATLAB 智能优化
1
含CubeMX所构建STM32F4工程(可直接编译运行)、网络训练模型和Cifar-10数据集。
2025-04-04 15:58:21 257.6MB stm32 神经网络 CubeMX keras
1
标题中的“动物识别系统Python+TensorFlow+卷积神经网络算法模型”表明这是一个基于Python编程语言,使用TensorFlow框架,并采用卷积神经网络(CNN)技术的项目,目的是实现对动物种类的自动识别。这个系统可能广泛应用于野生动物保护、宠物识别、动物园管理等领域。 在描述中,“动物识别系统Python+TensorFlow+卷积神经网络算法模型”进一步确认了系统的核心技术,即通过Python编程和深度学习框架TensorFlow来构建CNN模型,对动物图像进行分析和分类。卷积神经网络是深度学习领域中处理图像识别任务的一种非常有效的工具,它能够自动学习并提取图像的特征,从而达到识别的目的。 卷积神经网络(CNN)的基本结构包括卷积层、池化层、全连接层和激活函数等组件。卷积层用于提取图像特征,池化层则可以降低数据维度,减少计算量,同时保持关键信息。全连接层将特征图转换为类别概率分布,激活函数如ReLU则引入非线性,使得网络能处理更复杂的模式。 在Python中,TensorFlow提供了一个强大而灵活的平台,用于构建和训练这样的神经网络模型。用户可以通过定义模型架构、设置优化器、损失函数以及训练数据,来实现CNN的训练和评估。例如,可以使用`tf.keras.Sequential` API来搭建模型,通过`model.add(Conv2D)`添加卷积层,`model.compile(optimizer=optimizer, loss=loss_function, metrics=metrics)`来配置训练参数。 在实际项目中,通常需要一个大规模的标注图像数据集,比如ImageNet或COCO,但针对动物识别,可能需要特定于动物种类的数据集。这些数据集可能包含多个类别的动物图片,每张图片都需附带正确的标签。训练过程包括前向传播、反向传播和权重更新,以最小化预测结果与真实标签之间的差异。 在文件名“newname”中,虽然没有具体的细节,但通常在项目中,这可能代表处理后的数据集文件、模型保存文件或者训练日志等。例如,可能有经过预处理的图像数据集,如`train_data.csv`和`test_data.csv`,或者训练好的模型权重文件`model.h5`。 综合以上,这个项目涵盖了以下关键知识点: 1. Python编程:作为实现系统的编程语言,Python以其简洁的语法和丰富的库支持深度学习项目。 2. TensorFlow框架:提供了一套完整的工具,用于构建和训练深度学习模型,特别是CNN。 3. 卷积神经网络(CNN):专门用于图像识别的深度学习模型,通过多层卷积和池化操作提取图像特征。 4. 数据预处理:包括图像的归一化、缩放、增强等步骤,以提高模型的训练效果。 5. 训练与优化:包括定义损失函数、选择优化算法(如Adam)、设置学习率等,以调整模型的性能。 6. 模型评估与验证:通过交叉验证、混淆矩阵等方式评估模型的准确性和泛化能力。 7. 模型保存与加载:将训练好的模型保存为文件,方便后续使用或微调。 这个项目的学习和实践,将有助于提升对深度学习、计算机视觉以及Python编程的理解和应用能力。
2025-04-03 09:26:44 2KB
1
在当今数字化时代,数据驱动的决策变得越来越重要,特别是在预测分析领域。本资源包提供了一个针对汽车行业销量数据的时间序列分析模型,旨在使用长短期记忆网络(LSTM)——一种特殊的循环神经网络(RNN),来预测汽车销量的趋势。通过这样的神经网络,可以有效地学习和模仿汽车销量随时间变化的规律。 提到的car.csv文件是一个数据集,它包含了用于训练和测试LSTM模型所需的历史汽车销量数据。这类数据集通常包括日期、销量以及其他可能影响销量的因素,如经济指标、促销活动等。数据预处理是使用这些数据之前的重要步骤,包括去除异常值、处理缺失值、数据归一化等。在深度学习模型训练中,数据集的质量将直接影响模型的准确性和可靠性。 接着,LSTM理论知识模板.docx文件为用户提供了一个理论学习的基础。LSTM通过引入门控机制来解决传统RNN难以处理长期依赖问题。它包含输入门、遗忘门和输出门,这些门控结构使得LSTM能够保存或遗忘信息,并决定何时将信息传递到下一个状态。理解这些基本概念对于掌握LSTM的工作原理至关重要。 LSTM_car.py文件是本资源包的亮点,它包含了构建、训练和使用LSTM模型的完整代码。通过这个Python脚本,用户可以学习如何搭建LSTM网络,选择合适的损失函数和优化器,以及如何调参以提高模型的预测性能。对于学习者来说,它是一个非常实用的工具,可以将理论知识转化为实际操作。 从应用层面来看,能够准确预测汽车销量对于汽车制造商和销售商来说具有重大的经济意义。准确的销量预测可以帮助企业制定更加合理的生产计划和销售策略,减少库存积压,提高资金周转效率,从而在竞争激烈的市场中获得优势。此外,对于供应链管理、物流规划和市场营销等方面也有着直接的影响。 本资源包为研究人员和工程师提供了一个完整的工具集,涵盖了理论学习、数据处理和模型实现。这对于希望在时间序列预测领域深入研究或应用LSTM网络的用户来说,是一个宝贵的资源。通过实践学习,用户不仅可以提升自身的数据分析和机器学习能力,还能够更有效地解决实际问题。
2025-04-01 15:44:34 588KB 神经网络 lstm 数据集
1
内容包含1000张气泡图像和对应的YOLO标注txt文件,在机器学习和计算机视觉领域,YOLO(You Only Look Once)是一种流行的实时对象检测系统,它能够在单个前向传播中同时预测对象的边界框和类别概率。当处理包含气泡图像的数据集时,使用YOLO进行标注和训练可以实现对气泡的自动检测和定位。YOLO(You Only Look Once)是一种流行的实时目标检测算法,由美国研究人员约瑟夫·雷德蒙德·斯塔克(Joseph Redmon)在2016年提出。YOLO算法的主要特点是将目标检测任务转化为单个神经网络的回归问题,从而实现了高效的实时目标检测。YOLO算法的主要思想是将输入图像划分为S×S个网格单元,每个网格单元负责预测B个边界框(Bounding Box)以及这些边界框的置信度和类别。具体来说,每个边界框包含5个预测值,分别为边界框的中心坐标(x, y)、边界框的宽度和高度(w, h),以及一个置信度(c),置信度表示边界框内存在目标的可能性以及边界框与真实目标框的重合度(IOU,Intersection Over Union)。 在YOLO中,每个网格单元只负责
2025-03-31 23:58:31 408.06MB 数据集 神经网络 YOLO
1
【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。 【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。 【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。 【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。 【风力发电预测】RBF神经网络同样适用于风力发电量的预测。通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。 总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
2025-03-31 07:34:50 1.66MB 能源时代 能源信息 参考文献 专业指导
1
这里是100张电动车图像数据集,还有400张在主页,都是jpg格式,可用于机器学习、神经网络、深度学习中训练模型,我是用Python的标注工具labelimg进行标注,再利用YOLOv5进行训练自己的模型。图像清晰度可观,
2025-03-29 15:53:14 217.72MB 神经网络 深度学习 数据集
1
"点云神经网络的解释性单点攻击" 点云神经网络的可解释性单点攻击是近年来研究的热点话题。随着自动驾驶和机器人领域的发展,点云数据研究的需求也随之增加。点云网络的鲁棒性和可靠性变得越来越重要,但目前仍然没有得到充分的研究。点云神经网络的攻击可以分为两类:形状可感知的生成和点移动攻击。然而,大多数的研究都集中在欺骗人类,而不是解决模型本身的操作原理。 在这项工作中,我们提出了两种基于可解释性方法的对抗性攻击:单点攻击(OPA)和关键点攻击(CTA)。我们的方法通过结合可解释性方法更精确地瞄准对预测至关重要的点。我们的研究结果表明,流行的点云网络可以被欺骗的成功率很高,只需要从输入实例中移动一个点。 点云神经网络的可解释性单点攻击的研究具有重要的现实意义。在自动驾驶和机器人领域中,点云识别系统的稳定性和透明度是至关重要的。我们的方法可以用于检测点云网络的弱点,提高点云网络的鲁棒性和可靠性。 我们的方法也可以用于生成高质量的反事实,提高用户对模型的理解和信任。通过结合部分语义,我们的方法可以被扩展为生成高质量的反事实。此外,我们的方法也可以用于检测点云网络的内部脆弱性,提高点云网络的鲁棒性和可靠性。 本文的组织结构如下:我们介绍了点云神经网络的攻击的相关研究。然后,我们详细介绍了我们提出的方法。在第四节中,我们展示了对抗性示例的可视化,并展示了与现有研究的比较结果。在第五节中,我们讨论了从实验中得出的关于鲁棒性和可解释性的有趣观察结果。我们总结了我们的工作。 我们的贡献可以总结如下: * 我们提出了两种基于可解释性方法的对抗性攻击:单点攻击(OPA)和关键点攻击(CTA)。 * 我们调查了不同的池架构作为现有点云网络的替代品,这对内部脆弱性对关键点转移有影响。 * 我们从可解释性的角度讨论了对抗性攻击的研究潜力,并提出了我们的方法在促进可解释性方法的评估方面的应用。 在未来,我们计划继续深入研究点云神经网络的可解释性单点攻击,提高点云网络的鲁棒性和可靠性,并应用于自动驾驶和机器人领域。
2025-03-28 12:19:54 1005KB 对抗性攻击
1