利用Matlab进行逆变技术建模的方法及其应用。首先探讨了电压型单相半桥逆变电路,强调了死区时间和载波频率等关键参数的设定方法,并展示了如何通过Simulink生成标准方波并检测波形质量。接着讨论了电压型单相全桥逆变电路,在此基础上增加了移相角和谐波滤波器的设计,确保输出电压的总谐波失真率低于3%,同时解决了负载突变情况下的动态响应问题。最后深入讲解了电流型三相逆变电路,采用滞环控制策略来稳定电流输出,实现了完美的正弦波形以及正确的相位差。所有模型均经过充分调试,可以直接用于实际项目中。 适合人群:从事电力电子技术研发的专业人士,尤其是那些希望深入了解逆变技术原理及其实现细节的技术人员。 使用场景及目标:适用于需要快速构建逆变电路模型的研究人员和技术开发者,帮助他们节省大量实验成本,提高工作效率。主要目的是让使用者掌握不同类型的逆变电路的工作机制,学会正确配置相关参数,从而获得理想的波形输出。 其他说明:文中提供的Matlab代码片段可以帮助读者更好地理解和操作具体的逆变电路模型。此外,还特别提醒了一些容易忽视的问题,如死区时间的选择、LC参数匹配等,这些都是成功搭建高质量逆变电路的重要因素。
2025-12-06 21:38:45 13.14MB
1
利用PSIM软件对LLC全桥仿真方案的数字化控制及其波形解析学习:助力初学者实践及PI参数调试辅助工具,结合Mathcad计算应用,基于数字控制方式的LLC全桥仿真方案:使用PSIM软件直观学习波形,MathCad计算辅助调试电源,专为初学者设计,LLC全桥仿真方案。 用的是数字控制方式。 psim软件,可以很直观的学习认识各个位置波形。 通过调整PI参数来调试电源。 尤其对初学者帮助很大。 同时包含mathcad计算。 ,LLC全桥仿真方案; 数字控制方式; PSIM软件; PI参数调试; Mathcad计算。,数字控制LLC全桥仿真方案:PSIM软件直观学习与PI参数调试电源助手的实践
2025-11-24 22:20:22 881KB edge
1
单相全桥逆变器是一种常见的电力电子转换装置,它能将直流电源转换为交流电,广泛应用于太阳能发电系统、UPS电源、电机驱动等领域。在本文中,我们将深入探讨使用Simulink和MATLAB进行单相全桥逆变器的仿真方法。 MATLAB是一款强大的数学计算软件,而Simulink是其附带的图形化仿真工具,适用于系统级的建模和仿真。在电力系统领域,Simulink因其直观易用的界面和丰富的库函数,成为进行电力电子系统仿真研究的首选工具。 构建单相全桥逆变器的模型。在Simulink环境中,我们需要从库浏览器中选择适当的模块来搭建电路。主要包括以下几个部分: 1. **直流电源模块**:这是系统的输入,可以设置为恒定电压或可调电压,模拟电池或其他直流电源。 2. **全桥逆变器模块**:由四个开关(通常使用IGBT或MOSFET)组成,通过控制这些开关的通断,实现直流电到交流电的转换。在Simulink中,可以从电力库中找到对应的逆变器模型。 3. **PWM控制器模块**:用于生成驱动开关的脉宽调制信号。可以通过调节占空比控制逆变器输出电压的幅值和频率。 4. **滤波器模块**:输出交流电经过LC滤波器,以平滑波形并消除谐波。 5. **负载模型**:可以是电阻、电感或电动机等,代表逆变器实际工作时的负载。 6. **测量与显示模块**:用于监测和分析逆变器输出的电压、电流波形,以及系统性能。 在设置好模型后,运行仿真,观察输出波形。通过分析波形,我们可以评估逆变器的性能,如输出电压的稳定性、谐波含量等。此外,还可以改变PWM控制器参数,研究其对逆变器性能的影响,或者调整负载特性,观察系统动态响应。 在提供的文件中,"单相全桥逆变器仿真.html"可能是详细的仿真步骤说明,"单相全桥逆变器仿真.txt"可能包含了仿真结果的文本记录,而"sorce"可能是一个源代码文件,包含具体的Simulink模型搭建或MATLAB脚本。 利用MATLAB和Simulink进行单相全桥逆变器的仿真,不仅可以帮助我们理解和分析逆变器的工作原理,还可以在设计阶段优化控制策略,提高系统效率和稳定性。这是一项重要的工程实践技能,对于电力电子工程师和研究人员来说不可或缺。
2025-11-10 14:24:34 948KB matlab
1
电力电子仿真技术:DC-DC变换器与多种控制策略,移相全桥及三相PWM整流器的Simulink模拟应用,基于电力电子Matlab/Simulink仿真的多种变换器及复杂控制策略研究,电力电子Matlab仿真电力电子Simulink仿真 高频电电 力电子仿真Simulink (1)DC-DC仿真,buck,boost,Cuk,交错并联,PFC,APFC,LLC谐振双向,CLLC谐振双向,正激,反激,半桥和全桥等。 对应的控制方法主要有电压型单闭环控制,电压电流双闭环控制,平均电流控制,峰值电流控制,滞环控制,bangbang控制等。 (2)大功率的移相全桥,LLC谐振变器,无线电能传输,车载充电机,DAB,双有源桥。 控制方式有变频控制PFM,双闭环,移相控制,双移相控制,多移相控制。 (3)单相、三相PWM整流器、逆变器,双向变器。 锁相环,混合微电网,MPPT最大功率点跟踪,光伏并网系统仿真等。 三电平、五电平及多电平变器,多载波调制,单极性,双极性,单极倍频调制,SPWM, SVPWM等调制方式。 dq解耦,坐标系变等等。 控制方式常规双闭环PI控制,直接功率控制,模糊PI,重复
2025-10-24 14:51:35 2.89MB
1
内容概要:本文深入探讨了半桥与全桥LLC仿真中谐振变换器的四种基本控制方式:频率控制PFM、PWM控制、移相控制PSM和混合控制PFM+PSM。每种控制方式都有其独特的应用场景和技术特点。频率控制PFM适用于需要稳定输出电压和电流的场合,如UPS系统和变频空调;PWM控制通过改变开关管的导通时间来实现对电流和电压的控制,广泛应用于LED驱动器和逆变器;移相控制PSM通过移相角来控制变换器输出,适用于电动汽车充电站和变频风机;混合控制PFM+PSM则结合了前两种控制方式的优势,提高了变换器的性能和效率。此外,文章还介绍了PLECS、MATLAB和SIMULINK等仿真工具在电力电子领域的应用,帮助工程师模拟实际电路的工作状态,预测电路性能和稳定性。 适合人群:从事电力电子研究和开发的技术人员,尤其是对谐振变换器控制方式感兴趣的工程师。 使用场景及目标:①理解和掌握谐振变换器的不同控制方式及其应用场景;②利用PLECS、MATLAB和SIMULINK进行电路仿真,优化设计方案;③提高电力电子设备的性能和能效。 其他说明:随着技术的进步,未来可能会有更多的创新控制方式出现,进一步推动电力电子设备的发展。
2025-10-19 03:37:51 1004KB
1
内容概要:本文详细探讨了24V 2000W移相全桥闭环控制仿真模型的设计与优化。首先介绍了移相全桥变换器的基本概念及其在中大功率场合的应用优势。接着阐述了闭环控制的具体实现方法,包括PI控制器的Python代码实现,以及如何通过调整比例和积分系数来稳定输出电压。文中还讨论了在LTspice软件中搭建移相全桥电路模型的关键步骤,如设置电源参数、选择合适的功率开关管和设计变压器参数等。此外,作者分享了在仿真过程中遇到的问题及解决方案,如死区时间的设置、同步整流的影响、输出滤波电感的选择等。最后展示了仿真的结果,包括负载突变时的动态响应和效率曲线。 适合人群:从事电力电子设计的研究人员和技术工程师,尤其是对移相全桥闭环控制系统感兴趣的读者。 使用场景及目标:适用于需要设计高效稳定的24V 2000W移相全桥电源系统的工程师。主要目标是帮助读者理解移相全桥闭环控制的工作原理,掌握仿真建模技巧,解决实际工程中可能出现的技术难题。 其他说明:文章不仅提供了理论分析,还包括了大量的实践经验分享,有助于读者更好地理解和应用相关技术。同时,文中提供的代码片段可以直接用于实验和进一步开发。
2025-10-15 16:21:05 347KB
1
大厂PFC与全桥LLC集成变频控制的两相交错TCM图腾柱PWM代码实现方法及优化策略,大厂量产的两相交错TCM图腾柱变频控制PFC+全桥LLC源代码 PFC可通过变频控制实现软开关 ,两相交错TCM; 图腾柱变频控制; PFC; 全桥LLC; 软开关。,大厂高频两相交错TCM图腾柱PFC+全桥LLC变频控制源代码 在现代电力电子技术领域,功率因数校正(PFC)和全桥LLC谐振变换器(LLC)是提高电能转换效率和功率密度的重要技术。大厂在此技术上实现了两相交错时钟调制(TCM)图腾柱脉冲宽度调制(PWM)的控制方法,并提供相应的源代码,为变频控制提供了新的实现路径和优化策略。 PFC技术主要是用来改善电力系统中功率因数,通过变频控制可以实现软开关技术,从而降低开关器件的开关损耗,提高整体电能转换效率。全桥LLC谐振变换器作为一种高效的DC/DC转换器,具备优秀的调压特性和负载调整能力。将PFC与全桥LLC进行集成,不仅能够提供更加稳定和高效的能量转换,还能够通过两相交错技术进一步降低系统的纹波电流和谐波含量。 图腾柱变频控制结合了图腾柱拓扑结构和变频控制的优点,它能够实现电能的高效传输,同时保持较低的开关损耗。两相交错TCM技术的应用,则是利用两相或多相交替工作的特点来进一步平滑输出波形,降低能量转换中的噪声和干扰,提高系统的稳定性和可靠性。 大厂的技术创新不仅在理论上取得了突破,在实际应用上也提供了完整的源代码实现。这些代码基于高级编程工具和开发环境,例如gulp,这是一种自动化工具,通常用于前端开发中,处理文件的压缩、合并、转译等任务。虽然gulp主要用于Web开发中的静态资源处理,但在大厂的案例中,它可能被用于编译或构建源代码,以确保代码的质量和效率。 通过分析压缩包中的文件名称列表,我们可以发现其中包含了多种文档和文本文件,它们详细记录了大厂量产技术中的创新点和技术细节。例如,“大厂量产的全桥变频控制技术两相交错图腾柱软.doc”和“大厂量产的与全桥电源管理两相交错图腾柱变频控.doc”等文档,很可能是对相关技术的详细描述和实现步骤说明。这些文档对于深入理解大厂的技术创新以及如何在实际生产中应用这些技术具有重要价值。 大厂在PFC与全桥LLC集成变频控制技术领域的创新,不仅推动了电力电子技术的发展,也为相关产业的生产效率和产品质量提升提供了强大的技术支持。通过这些技术的实现和优化策略,大厂为其量产设备中的电能转换系统带来了革命性的变革。
2025-10-14 15:00:45 77KB gulp
1
内容概要:本文详细介绍了设计一个输入400V、输出48V、功率2KW的全桥LLC谐振变换器的过程。主要内容包括谐振电路参数(如谐振电感Lr、谐振电容Cr、励磁电感Lm)的计算,变压器匝比的确定,MOS管和二极管的选择,以及输出电容的计算。文中还展示了如何利用Matlab/Simulink进行仿真验证,确保设计的正确性和稳定性。通过调整参数,观察输出电压和电流的波形,确保设计满足要求。 适合人群:电力电子工程师、从事电源设计的技术人员、对LLC谐振变换器感兴趣的科研人员。 使用场景及目标:适用于需要设计高效、稳定的全桥LLC谐振变换器的场合,特别是对于需要精确计算和仿真的应用场景。目标是帮助读者掌握LLC谐振变换器的设计方法,提高设计效率和准确性。 其他说明:文章提供了详细的数学公式和Matlab代码片段,便于读者理解和复现设计过程。同时,强调了实际应用中的注意事项,如元件选择、参数调整和仿真技巧。
2025-10-08 16:08:45 856KB
1
基于STM32F103的3.6kW储能逆变器设计方案,涵盖了硬件架构、软件实现以及保护机制等方面的内容。硬件方面采用BOOST+全桥拓扑设计,主控板为STM32F103C8T6,支持并网充电、放电及并离网自动切换等功能,并提供了过流、过压、短路、过温等全面保护措施。软件部分展示了PWM互补通道配置、ADC采样滤波算法、在线升级机制等关键技术点。此外,文中还提到了PCB布局技巧、SPWM波形生成算法及其优化方法。 适合人群:对嵌入式系统开发有一定基础的技术人员,特别是从事电力电子、新能源领域相关工作的工程师。 使用场景及目标:适用于希望深入了解储能逆变器设计原理和技术细节的专业人士,旨在帮助他们掌握基于STM32平台进行高效、低成本逆变器开发的方法。 其他说明:文中提供的完整工程文件(含PCB、原理图、源码)有助于读者快速上手实践,同时强调了STM32相比传统DSP方案的优势,如开发成本低、易维护等特性。
2025-09-28 21:49:53 414KB
1