单相逆变电路系列之仿真研究:桥式有源逆变、半波可控整流与波形分析,单相桥式整流电路与有源逆变电路Simulink仿真:触发角与负载变化波形分析,单相桥式有源逆变电路,单相半波可控整流电路,单相桥式半控整流电路,单相桥式全控整流电路,单相交流调压电路simulink仿真,还有相应说明图(触发角不同时和负载不同时的波形)。 ,单相桥式有源逆变电路; 半波可控整流电路; 桥式半控整流电路; 桥式全控整流电路; 交流调压电路; Simulink仿真; 触发角波形; 负载波形。,单相整流与调压电路的Simulink仿真研究:不同触发角与负载下的波形分析
2025-10-31 11:00:11 5.33MB
1
三相半波可控整流电路是多相整流电路中最基本的一种。由于其结构简单,如果能熟练掌握其工作原理,对于学好及掌握好三相桥式可控整流以及其它大功率多相整流电路非常重要,比如三相桥式可控整流就是由两个三相半波可控整流电路组成。本报告阐述了三相半波可控整流电路的工作原理,在MATLAB/Simulink中建立了其仿真模型,并给出了在纯电阻和阻感性负载情况下的仿真波形,最后对仿真结果进行了比较分析,为三相半波可控整流电路在实际工程中的应用打下了坚实的基础。
2025-10-22 21:14:56 663KB matlab simulink 实验报告
1
【技术博客】基于MATLAB Simulink的移相变压器仿真模型,模拟实现可调移相角度的变压器副边36脉波不控整流,MATLAB Simulink仿真模型实现可设置移相角度的变压器副边36脉波不控整流,Phase_Shift_T:基于MATLAB Simulink的移相变压器仿真模型,可实现-25°、-15°……25°的移相。 变压器副边实现36脉波不控整流,变压器网侧电压、阈侧电压以及移相角度可直接设置。 仿真条件:MATLAB Simulink R2015b ,核心关键词: 1. 移相变压器仿真模型 2. MATLAB Simulink 3. 移相 4. 36脉波不控整流 5. 网侧电压 6. 阈侧电压 7. 设置 8. MATLAB Simulink R2015b,MATLAB Simulink中实现宽范围移相与多脉波整流的变压器仿真模型
2025-10-15 09:31:02 3.38MB
1
STM32F334,全桥逆变,HRTIM用于移相全桥电路的脉冲驱动。CHA1,CHA2互补输出,插入了死区。例程中含有1流水灯2定时器实验3按键检测4外部中断5ADC读取温度6串口通讯7 I2C读取EEPROM
2025-07-19 10:44:26 17.05MB stm32
1
内容概要:本文详细介绍了STM32全桥逆变电路的设计与实现,重点讲解了IR2110驱动IRF540N MOSFET的高效率输出交流波形。文章首先概述了全桥逆变电路的基本原理及其广泛应用,接着深入探讨了IR2110作为高电压、高速MOSFET驱动器的特点及其在半桥MOS管中的应用。随后,文章详细解析了STM32如何通过定时器生成SPWM波形,并通过软件算法调整PWM参数以实现高质量的SPWM输出。此外,还提供了立创原理图的解析,展示了各元件的具体连接方式和工作原理。最后,作者总结了实践经验,强调了学习和掌握SPWM波形原理的重要性。 适用人群:对电力电子、电机控制等领域感兴趣的电子工程师和技术爱好者,尤其是希望深入了解全桥逆变电路和SPWM波形设计的人群。 使用场景及目标:适用于需要将直流电源转换为交流电源的实际应用场景,如家庭用电、工业控制等。目标是帮助读者理解并掌握全桥逆变电路的工作原理,特别是SPWM波形的生成和优化方法。 其他说明:文中提供的实践经验和代码解析对于初学者来说非常宝贵,有助于快速上手并进行实际项目开发。
2025-07-12 18:47:07 6.51MB 电力电子 SPWM STM32 MOSFET
1
模型保存的版本为matlab2020a
2025-06-12 14:24:36 39KB matlab simulink 电力电子
1
三相桥式全控整流及其有源逆变与Simulink仿真探究:触发角与负载变化下的波形图分析,三相桥式全控整流及其有源逆变和三相桥式全控整流simulink仿真,还有相应的说明图(触发角不同时和负载不同时的波形图)。 买的话直接说想要哪个仿真和是否要说明图。 ,核心关键词:三相桥式全控整流;有源逆变;Simulink仿真;触发角;负载;波形图。,三相桥式全控整流与有源逆变仿真及负载与触发角影响波形分析 三相桥式全控整流技术是电力电子领域中的关键技术之一,广泛应用于工业中将交流电转换为直流电,尤其是在需要高电压和大电流的应用场合。全控整流桥由六个可关断的半导体开关(通常是晶闸管或者IGBT)组成,通过精确控制这些开关的导通和关断时间,可以实现对直流输出电压的精细调节。 有源逆变技术则是整流的逆过程,其核心目的是将直流电能逆变为交流电能,并通过控制逆变器的开关器件实现对交流电压波形和频率的控制,从而满足特定的负载要求。有源逆变不仅要求逆变器具有高度的灵活性和可调节性,还必须保证逆变过程的稳定性和安全性。 Simulink仿真软件是MathWorks公司推出的基于MATLAB的多域仿真和基于模型的设计工具,它提供了一个可视化的环境,可以用来模拟包括三相桥式全控整流和有源逆变在内的多种电力电子系统。在Simulink中,工程师可以搭建电路模型,并通过设置参数来模拟不同的触发角和负载条件下的波形变化,从而分析系统性能。 触发角是指在三相桥式全控整流电路中,晶闸管从正向阻断状态转为导通状态的时刻,这个角度通常以电网电压的相位为参考。触发角的大小直接影响到输出直流电压的平均值,较小的触发角将导致较大的直流输出电压,反之亦然。因此,触发角的控制是三相桥式全控整流系统中实现电压调节的重要手段。 负载变化也会对三相桥式全控整流电路的输出波形产生影响。负载的种类、大小和变化特性都会影响到整流电路的工作状态,例如,负载的突变可能会引起输出电流和电压的波动。因此,研究负载变化下的波形图对于确保电路稳定运行和优化系统性能至关重要。 通过对三相桥式全控整流及其有源逆变技术的深入分析,可以更好地理解其在电力系统中的应用。本文档集还包含了技术解析、应用分析和仿真研究等方面的内容,帮助读者全面掌握三相桥式全控整流技术的理论知识及其在实际中的应用,从而为相关技术的开发和优化提供了理论指导和实践参考。 三相桥式全控整流及其有源逆变技术的Simulink仿真探究涉及到电力电子技术、控制理论和计算机仿真等多个领域,是现代电力电子技术研究中的一个重要课题。
2025-05-28 01:48:49 400KB paas
1
1、单极性调制仿真验证,主要验证单极性调制时各开关管的驱动波形时序逻辑; 2、和双极性调制仿真作对比,因为不同的调制方式对于过零点畸变,THD等都有影响所以想都研究研究;
2025-05-17 19:29:16 45KB 学习笔记
1
STM32全桥逆变电路原理图:IR2110驱动IRF540N MOS,最大50V直流输入,高交流利用率,谐波低于0.6%,SPWM波形学习好选择,STM32全桥逆变电路原理图:IR2110驱动IRF540N半桥设计,高效率SPWM波形,低谐波干扰立创电路设计分享,stm32全桥逆变电路 采用2个ir2110驱动半桥 mos采用irf540n 最大输入直流50v 输出交流利用率高 谐波0.6% 立创原理图 有stm32系列 想学习spwm波形的原理以及相关代码这个是个不错的选择,网上现成代码少,整理不易 ,stm32;全桥逆变电路;ir2110驱动;irf540n MOS;最大输入直流50v;输出交流利用率高;谐波0.6%;立创原理图;spwm波形原理及相关代码。,基于STM32的全桥逆变电路:IR2110驱动的SPWM波形原理与实践
2025-04-29 20:27:51 11.29MB
1
在电力电子技术领域,整流电路是一种将交流电(AC)转换为直流电(DC)的电路,广泛应用于电源设备、电气传动和其他需要直流电源的场合。单相桥式全控整流电路是其中一种重要的电路拓扑,它使用四个全控型电力电子器件(通常是晶闸管)组成桥式结构,能够实现对输出直流电压的有效控制。在电阻性负载条件下,这种电路能够提供较为平滑的直流输出,并且能够通过调节触发角来控制输出电压的大小,进而影响负载上的功率。 在本研究中,通过对单相桥式全控整流电路进行Simulink仿真,可以更直观地分析电路在不同触发角度下的工作特性。Simulink是MATLAB的一个附加产品,它提供了一个交互式的图形化环境,用于模拟和动态系统分析。使用Simulink进行仿真,不仅可以帮助工程师和学生更好地理解电路的工作原理,还能在实际搭建电路前进行预测和验证。 根据给定的文件信息,仿真模型的输入电压峰值设定为22V,而负载电阻为2欧姆,这样的参数设置能够帮助研究者观察在特定条件下电路的整流效果和输出特性。触发角作为全控整流电路的一个关键参数,它决定了晶闸管导通的时机。在本仿真模型中,触发角分别设置了30度、60度和90度,这三种不同的触发角度分别对应了不同的输出直流电压水平。较小的触发角会在交流输入电压较小时就开始导通晶闸管,导致输出电压较高;而较大的触发角则相反,会延迟导通时间,从而减少输出电压。这样的设计可以帮助研究者深入理解触发角对输出电压波形的影响,以及整流效率的变化。 在进行Simulink仿真的过程中,用户需要确保软件版本符合要求,即最低为2018a版本,最高不超过2024a版本。这是因为不同版本的软件可能在兼容性或功能上存在差异,保证软件版本的一致性可以确保仿真模型的正确运行和结果的一致性。 整个仿真过程通常涉及以下几个步骤:建立电路模型,包括输入电源、桥式整流电路、触发控制逻辑和负载电阻等部分;设置仿真参数,如仿真时间、步长、积分方法等;然后,运行仿真,收集输出电压和电流数据;对仿真结果进行分析,比如通过波形图观察电压和电流的波形变化,计算整流效率、谐波含量等性能指标。 通过此类仿真,不仅可以观察到整流电路在不同工作状态下的表现,还可以对电路设计进行优化。例如,通过调整触发角,可以减少输出直流电压的脉动,提高输出电压的质量;通过改变负载电阻,可以研究电路在不同负载条件下的适应性;此外,还可以对电路的动态响应进行分析,评估在负载突变或电网波动等情况下电路的稳定性和可靠性。 此外,Simulink仿真还可以与其他工具或硬件相结合,实现从模型到实际硬件的快速原型设计。通过MATLAB与硬件接口,可以将仿真的结果直接应用于实际电路,加速产品的开发周期,降低研发成本,提高产品的性能和稳定性。 单相桥式全控整流电路带电阻负载的Simulink仿真研究对于电力电子电路设计与优化具有重要的意义。通过对电路关键参数如触发角度的调整和分析,可以获得更加精准和高效的直流电源,为各种应用场合提供可靠的电力支持。
2025-04-27 17:20:04 258KB simulink
1