1、YOLOv7不同颜色的安全帽佩戴检测训练权重 ,附有各种训练曲线图,可使用tensorboard打开训练日志 2、检测结果和数据集参考:https://blog.csdn.net/weixin_51154380/article/details/127651243?spm=1001.2014.3001.5502
智慧工地项目 1、基于YOLOV5安全帽检测系统及危险区域入侵检测告警系统_带GUI界面(包含python源码+项目说明)。 2、该项目是使用 YOLOv5 算法来实现在智能工地安全领域中头盔目标检测的应用。 运用yolov5网络进行工人安全帽检测以及危险区域入侵检测,将报警信息通过微信公众号推送给安全员或者项目负责人。 3、使用的pytorch深度学习框架,python语言编写。 源码中带有pyqt5写的GUI界面,界面按钮名称可以自定义。 资源中含有项目详细操作文档介绍,建议根据项目说明来一步步操作。 【备注】使用过程有问题,请留言或者私信博主!
电网施工安全帽检测图像数据集(4000多张图像,含标签)
1
基于yolov6的安全帽检测,模型已经训练好,可以直接使用,模型位置runs/train,检测例子位于runs/detect。并且包含数据集,可以直接进行训练,数据集位置hat_recog
2022-10-18 22:05:29 930.78MB 目标检测 yolov6
1
基于yolov5的安全帽检测,模型已经训练好,可以直接使用,模型位置runs/train,检测例子位于runs/detect。并且包含数据集,可以直接进行训练,数据集位置hat_recog
2022-10-18 16:04:53 945.87MB 目标检测 yolov5
1
《YOLOv5实现佩戴安全帽检测和识别(含佩戴安全帽数据集+训练代码)》,目前,基于YOLOv5s的目标检测的佩戴安全帽识别方法的平均精度平均值mAP_0.5=0.93,mAP_0.5:0.95=0.63https://blog.csdn.net/guyuealian/article/details/127250780
1
佩戴安全帽检测和识别Android App,Android佩戴安全帽的检测效果还是可以的,高精度版本YOLOv5s平均精度平均值mAP_0.5=0.93,mAP_0.5:0.95=0.63,而轻量化版本yolov5s05_320mAP_0.5=0.84左右
1
yolov5训练安全帽检测所需资源及脚本
2022-08-02 20:04:55 89.82MB yolov5 安全帽检测
1
深度学习 ,,安全帽检测
2022-07-13 21:07:37 761.48MB 安全帽检测
1、yolov5不同颜色安全帽检测,包含训练好的不同颜色安全帽检测权重,以及PR曲线,loss曲线等等,在3000多不同颜色安全帽检测据集中训练得到的权重,有pyqt界面,目标类别名为各种颜色的安全帽以及未正常佩戴安全帽共5个类别;并附不同颜色安全帽检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、pyqt界面可以检测图片、视频、调用摄像头 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码