基于yolov5的安全帽检测,模型已经训练好,可以直接使用,模型位置runs/train,检测例子位于runs/detect。并且包含数据集,可以直接进行训练,数据集位置hat_recog
2022-10-18 16:04:53 945.87MB 目标检测 yolov5
1
《YOLOv5实现佩戴安全帽检测和识别(含佩戴安全帽数据集+训练代码)》,目前,基于YOLOv5s的目标检测的佩戴安全帽识别方法的平均精度平均值mAP_0.5=0.93,mAP_0.5:0.95=0.63https://blog.csdn.net/guyuealian/article/details/127250780
1
佩戴安全帽检测和识别Android App,Android佩戴安全帽的检测效果还是可以的,高精度版本YOLOv5s平均精度平均值mAP_0.5=0.93,mAP_0.5:0.95=0.63,而轻量化版本yolov5s05_320mAP_0.5=0.84左右
1
yolov5训练安全帽检测所需资源及脚本
2022-08-02 20:04:55 89.82MB yolov5 安全帽检测
1
深度学习 ,,安全帽检测
2022-07-13 21:07:37 761.48MB 安全帽检测
1、yolov5不同颜色安全帽检测,包含训练好的不同颜色安全帽检测权重,以及PR曲线,loss曲线等等,在3000多不同颜色安全帽检测据集中训练得到的权重,有pyqt界面,目标类别名为各种颜色的安全帽以及未正常佩戴安全帽共5个类别;并附不同颜色安全帽检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、pyqt界面可以检测图片、视频、调用摄像头 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码
安全帽的佩戴对于很多场景非常重要,尤其是生产建筑工地。而且,建筑工地中被物体 撞击和坠落是最常见的致命事故类型,占总体的 68%以上。但是,在实际场景中,人员地域 分布广,环境复杂,操作量大,安全监督有限,难以实现实时全程的安全管理,因此有必要 开发自动的安全帽识别方法。 由于安全帽在实际场景中存在遮挡、尺度、数据集少、小对象识别、安全帽载体识别等 挑战问题,使得安全帽的自动识别非常困难;同时与人脸相比,行人有较大的遮挡和柔性的 变化,在密集人群时检测困难,而且没有人脸无法取证。 本项目的目的是基于检测的多人脸框信息,自动回归出安全帽组的候选区域,并进一步 将各个人脸作为取证,同时识别候选区域是否存在安全帽,本项目提供了解决上述问题的一 种基于人脸检测框回归安全帽位置的技术。
2022-06-17 12:05:03 1.26MB 软件
1
安全帽检测数据集 (Helmet Detection).zip
2022-06-16 09:05:02 1.22GB 数据集
1、YOLO安全帽检测数据集,3500张使用lableimg标注软件,标注好的真实场景的高质量图片数据,图片格式为jpg,标签有两种,分别为VOC格式和yolo格式,分别保存在两个文件夹中,可以直接用于YOLO安全帽检检测;数据场景丰富;根据安全帽的颜色分为white、red、yellow等共5类别目标 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743
Darknet版YOLOv4安全帽检测: 1、包含训练好的weights权重文件,以及后缀为cfg、data、names的配置文件,并包含训练map曲线和loss曲线,map到90%多 2、包含6000多张安全帽检测数据集,类别名为person和hat,标签格式为txt和xml两种,分别保存在两个文件夹中 3、检测效果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743
2022-06-01 16:06:25 387.4MB YOLOv4安全帽检测 Darknet版YOLOv4