基于强化学习的地铁站空调系统节能控制 本文主要介绍了基于强化学习的地铁站空调系统节能控制策略。该策略采用神经网络建立空调系统模型,并使用基于多步预测的深度确定性策略梯度算法来解决空调系统的节能控制问题。该算法可以提高算法效率,并且可以 guarantee 空调系统的舒适性和节能性。 在本文中,作者首先介绍了地铁站空调系统的现状和挑战,包括传统控制方法的不足之处和当前地铁站空调系统的节能问题。然后,作者提出了基于强化学习的地铁站空调系统节能控制策略,该策略使用神经网络建立空调系统模型,并使用基于多步预测的深度确定性策略梯度算法来解决空调系统的节能控制问题。 该策略的优点是可以 guarantee 空调系统的舒适性和节能性,同时也可以提高算法效率。作者使用了武汉某地铁站的实测运行数据进行仿真实验,结果表明,所提出控制策略具有较好的温度跟踪性能,能够 guarantee 站台舒适性,且与目前实际系统相比能源节省约17.908 %。 该策略的主要贡献是: 1. 提出了基于强化学习的地铁站空调系统节能控制策略,该策略可以 guarantee 空调系统的舒适性和节能性。 2. 使用神经网络建立空调系统模型,解决了无模型强化学习方法在线训练收敛时间长的问题。 3. 提出了基于多步预测的深度确定性策略梯度算法,提高了算法效率。 4. 设计了智能体框架,用于与环境模型进行交互训练。 5. 设定了智能体训练终止条件,进一步提升了算法效率。 该策略的应用前景广阔,例如可以应用于其他类型的地铁站空调系统、楼宇自动化系统等领域,可以 guarantee 能源节省和舒适性的同时提高算法效率。 知识点: 1. 强化学习:强化学习是一种机器学习方法,通过奖励函数来指引智能体学习和决策。 2. 深度确定性策略梯度算法:深度确定性策略梯度算法是一种基于强化学习的算法,可以解决连续动作空间的问题。 3. 神经网络:神经网络是一种机器学习模型,可以用来建立空调系统模型。 4. 多步预测:多步预测是一种预测方法,可以预测未来多步的状态和奖励。 5. 智能体框架:智能体框架是一种用于与环境模型进行交互训练的框架。 6. 节能控制:节能控制是一种控制方法,旨在减少能源的消耗和浪费。 本文提出了一种基于强化学习的地铁站空调系统节能控制策略,该策略可以 guarantee 空调系统的舒适性和节能性,并且可以提高算法效率。
2025-11-18 19:09:09 1.44MB
1
本书系统介绍深度强化学习的核心理论与实践方法,涵盖价值-based、策略-based和模型-based学习,深入探讨多智能体、分层与元学习等前沿主题。结合Python代码实例与经典算法,帮助读者从基础到进阶全面掌握强化学习技术。配套网站提供课件、代码与练习资源,适合研究生与研究人员自学或教学使用。 深度强化学习是人工智能领域的一个重要分支,它将深度学习与强化学习相结合,通过智能体与环境的交互学习来实现最优决策。深度强化学习在游戏、机器人控制、自动驾驶等众多领域都取得了突破性进展。 价值基础、策略基础和模型基础学习是深度强化学习的三大主要学习方式。价值基础学习侧重于学习状态的价值函数或状态-动作对的价值函数,以此评估每个动作的期望回报。策略基础学习则直接学习一个策略,即从状态到动作的映射。模型基础学习则关注学习环境的模型,这个模型可以用来预测未来状态或未来奖励。 多智能体、分层和元学习是深度强化学习中的一些前沿主题。多智能体学习涉及多个智能体在环境中相互作用,并学习如何协调或竞争。分层学习是通过分解复杂任务为更小的子任务,并学习不同层次的策略来解决更复杂问题的一种方法。元学习是一种学习如何学习的技术,它使智能体能够快速适应新环境或任务。 Python由于其简洁性和强大的库支持,成为深度强化学习实现和实验的首选语言。在本书中,作者提供了Python代码实例和经典算法,帮助读者更直观地理解和实现深度强化学习。此外,配合网站提供的课件、代码和练习资源,读者可以通过实践加深对深度强化学习的理解。 深度强化学习入门与实践适合研究生和研究人员自学或教学使用。它不仅为初学者提供了学习深度强化学习的基础知识,同时也为进阶学习者提供了深入了解前沿主题的途径。本书的内容深度与广度兼备,系统全面地介绍了深度强化学习的相关理论和实践技巧,使其成为该领域的实用学习资源。 本书的内容结构清晰,从基础概念的介绍开始,逐步深入到高级话题,确保读者能够逐步建立深度强化学习的知识体系。每一章节都紧密联系理论与实践,通过代码实例来强化理论知识的理解。书中的理论介绍和算法分析都紧密结合实际应用,使读者能够在实践中发现和解决问题。 通过对这本书的学习,读者将能够掌握深度强化学习的关键技术,并在实际问题中应用这些技术,从而在自己的研究或工作中实现突破和创新。同时,本书的资源和实例将帮助读者构建一个坚实的基础,以便在人工智能领域中不断探索和前进。由于深度强化学习是目前人工智能研究的热点,本书的出版无疑对于推动相关领域的学术进步和实践发展具有重要意义。
2025-11-06 19:44:37 18.64MB 深度学习 强化学习 人工智能
1
强化学习是一类以马尔可夫决策过程为基础的算法,其目标是训练一个智能体,使其能够在环境中采取行动以最大化累计回报。强化学习的主要难点包括奖励延迟和智能体行为对后续观察的影响,这要求算法能够处理时间上的延迟反馈,并且能够考虑到智能体行动对环境状态的长远影响。 强化学习可以分为以下几类: 1. Policy-Based(基于策略的学习):该方法直接学习一个策略,该策略根据当前观察到的状态来输出行动。策略可以表示为一个神经网络,网络的输入是环境的状态(通常表示为向量或矩阵),输出则是与各个可能行动相关的神经元激活程度。 2. Value-Based(基于价值的学习):这种方法通过学习价值函数来评价每个状态或状态-行动对的好坏,而不是直接学习策略。价值函数通常为一个评价函数(Critic),用来预测从当前状态开始,能够获得的期望回报。 3. Actor + Critic:这是结合了策略梯度和价值函数的方法,其中Actor负责生成策略,而Critic负责评估这个策略的价值。这种方法同时学习策略和价值函数,试图结合两种方法的优势。 4. Model-Based(基于模型的学习):与上述方法不同的是,Model-Based方法不仅学习策略或价值函数,还要学习一个环境模型。这个模型可以用来预测环境如何随智能体的行动而改变,从而允许智能体在实际与环境交互之前进行模拟和规划。 强化学习的学习过程通常包括几个关键的步骤: 第一步是选择或设计Actor,即策略网络。第二步是评估策略好坏的标准,通常以期望总回报来衡量,这个过程涉及到大量的采样,因为可能的状态空间和行动空间是非常巨大的。第三步是通过梯度上升方法或其它优化技术来更新策略网络,目标是提升期望回报。 在基于策略的强化学习中,基线调整是一个重要的概念,它可以减少方差并加速学习过程。基线可以是任何与特定状态或行动无关的值,例如平均回报或任意常数,用于从策略的预期回报中减去,使得估计更加稳定。 在学习过程中,智能体可能会从on-policy策略过渡到off-policy策略,on-policy意味着学习策略同时用于生成数据和评估这些数据,而off-policy则意味着学习策略与生成数据的策略是分开的,这允许算法从先前的经验中学习。 重要性采样是处理on-policy和off-policy数据的常见方法,允许智能体使用从一个策略收集的数据来评估另一个策略。然而,重要性采样本身存在样本效率低和方差高的问题,因此需要额外的技巧来减小这些影响。 在策略学习中,如何合理地分配奖励并对其归因也是一个重要的问题。合理的奖励分配能够确保智能体行为的正确评估,这是学习过程成功的关键。 算法的收敛性和稳定性是通过加入各种约束来保证的,例如限制策略参数的变化范围以避免策略过于激进或保守,确保学习过程能够持续并稳定地改善智能体的性能。
2025-11-04 09:29:48 1003KB 强化学习 Policy-Based 深度学习
1
内容概要:本文详细介绍了基于混合整数线性规划(MILP)和双延迟深度确定性策略梯度(TD3)的用户侧储能系统优化运行策略。该策略旨在解决深度强化学习在储能控制中难以严格满足运行约束的问题。通过MILP确保动作的可行性,利用TD3进行优化决策,研究建立了考虑电池退化成本的运行优化模型。文章提供了详细的代码实现,包括环境建模、MILP求解器、TD3算法、增强型MILP求解器、完整训练流程、性能对比分析以及实时调度测试。此外,还深入分析了核心创新点,如约束处理机制和成本优化,并展示了算法的完整实现过程。 适合人群:具备一定编程基础,对储能系统优化、深度强化学习和混合整数线性规划感兴趣的科研人员和工程师。 使用场景及目标:①研究和开发用户侧储能系统的优化运行策略;②理解和应用MILP和TD3结合的技术来提升储能系统的运行效率和降低成本;③评估不同算法(如TD3和MILP-TD3)在储能控制中的性能差异。 其他说明:本文不仅提供了理论分析,还给出了详细的代码实现,便于读者复现实验结果。文中强调了关键实现细节,如电池退化成本模型、严格的约束处理机制以及完整的性能评估指标。通过这些内容,读者可以深入了解并实践基于MILP-TD3的储能系统优化方法。
2025-11-03 18:29:56 58KB 深度强化学习 储能系统 优化调度
1
基于深度强化学习(DRL)的DQN路径规划算法及其在MATLAB中的实现。DQN算法结合了深度学习和强化学习,能够在复杂的状态和动作空间中找到最优路径。文中不仅提供了完整的MATLAB代码实现,还包括了详细的代码注释和交互式可视化界面,使用户能直观地观察和理解算法的学习过程。此外,代码支持自定义地图,便于不同应用场景的需求。 适合人群:对深度强化学习感兴趣的研究人员和技术爱好者,尤其是希望深入了解DQN算法及其实际应用的人群。 使用场景及目标:适用于研究和开发智能路径规划系统,特别是在机器人导航、自动驾驶等领域。通过学习本文提供的代码和理论,读者可以掌握DQN算法的工作原理,并将其应用于各种迷宫求解和其他路径规划任务。 其他说明:为了确保算法的有效性和稳定性,文中提到了一些关键点,如网络结构的选择、超参数的优化、环境建模和奖励函数的设计等。这些因素对于提高算法性能至关重要,因此在实际应用中需要特别注意。
2025-10-29 21:18:17 480KB
1
内容概要:本文详细介绍了基于强化学习的车间调度方法,特别是深度Q网络(DQN)和近端策略优化算法(PPO)的应用。文章首先概述了车间调度问题及其面临的挑战,接着分别阐述了DQN和PPO的核心原理、代码实现及应用场景。DQN通过Q学习结合神经网络处理高维状态空间,适用于离散动作空间;PPO则通过策略梯度直接优化策略网络,更适合连续动作空间和多目标优化。文中还提供了详细的代码示例,展示了这两种算法的具体实现方式,并讨论了它们各自的优缺点。此外,文章强调了状态设计和奖励函数设计的重要性,并给出了实际应用中的注意事项。 适合人群:对强化学习感兴趣的科研人员、工程师和技术爱好者,尤其是那些关注智能制造和工业自动化领域的专业人士。 使用场景及目标:①帮助读者理解DQN和PPO在车间调度中的应用;②指导读者进行相关算法的实际编码实现;③为解决复杂多变的生产环境中的调度问题提供新的思路和方法。 其他说明:文章不仅讲解了理论知识,还提供了丰富的代码实例,便于读者理解和实践。同时提醒读者在实际应用中需要注意的问题,如状态表示、奖励函数设计等。
2025-10-27 10:53:31 202KB
1
资源下载链接为: https://pan.quark.cn/s/df0cdf717d0f UAVGym 是一款基于 Python 开发的无人机仿真环境,采用 GYM 风格设计,专为强化学习算法研究打造。 该仿真环境具备丰富的自定义功能,支持对飞行环境进行个性化设置,包括自由调整地图大小、灵活配置障碍物分布等,满足不同场景下的仿真需求。同时,它能够对不同数量的无人机进行仿真控制,轻松实现多无人机协同仿真场景。此外,环境还集成了三维轨迹绘制功能,可通过 Matplotlib 直观展示无人机的飞行轨迹,便于观察和分析飞行过程。作为符合 OpenAI Gym 接口标准的仿真工具,它能无缝对接各类强化学习算法,为算法研发提供稳定的实验平台。 提供 Map1 和 Map2 两个场景的演示动画,直观展示环境的仿真效果。 运行该环境需要满足以下依赖条件:Python 3.6 及以上版本,以及 OpenAI Gym、Matplotlib、Numpy 等 Python 库。 关于环境的详细使用说明,可参考代码中的注释内容,获取具体的操作指导。 在 10.6 的更新中,项目在原有功能基础上进行了扩展,新增了 BoidFlock 相关的演示代码,为群体行为仿真研究提供了更多参考示例。 我们欢迎开发者通过 issue 反馈问题或提出建议,也鼓励通过 Pull Request(PR)提交代码贡献,共同完善该项目。
2025-10-16 15:37:47 420B 无人机仿真
1
强化学习是一种人工智能领域的学习方法,它让智能体通过与环境的交互来学习最优策略,以最大化长期奖励。动态规划(Dynamic Programming,DP)是强化学习中的一个基础算法,尤其适用于解决离散时间、离散状态空间的问题。在这个“强化学习之动态规划算法MATLAB演示程序”中,我们将深入探讨动态规划在强化学习中的应用,并了解如何用MATLAB来实现这一算法。 动态规划通常用于解决多阶段决策问题,它可以将复杂问题分解为更小的子问题,然后逐个求解。在强化学习中,动态规划通常用于计算贝尔曼方程,这是一组描述智能体在环境中如何根据当前状态和动作来最大化未来奖励的方程。主要有两种类型的动态规划方法:价值迭代和策略迭代。 1. 价值迭代(Value Iteration):这是一种基于策略评估的算法,它不断更新每个状态的价值估计,直到收敛到最优值函数。价值迭代的基本步骤包括: - 初始化所有状态的价值函数为任意值。 - 对每个状态执行以下操作:计算该状态下所有可能动作的预期回报,选取最大值并更新该状态的价值。 - 当状态价值的改变小于某个阈值时,停止迭代,此时得到的是最优值函数。 2. 策略迭代(Policy Iteration):这是一种结合策略评估和策略改进的算法,它在策略评估和策略改进两个步骤间交替进行,直到找到最优策略。 - 策略评估:给定一个策略,计算其对应的值函数,直到收敛。 - 策略改进:基于当前的值函数,找出一个更好的策略,如贪婪策略,即选择每个状态下能获得最大期望回报的动作。 - 重复这两个步骤,直至策略不再改变,即找到了最优策略。 MATLAB是一种强大的编程环境,尤其适合数值计算和数据分析。在MATLAB中实现强化学习的动态规划算法,你需要理解矩阵操作、循环和条件语句等基本概念。文件名“RL_DP”很可能包含一系列示例代码,这些代码可能涵盖上述两种动态规划算法的实现,以及如何构建状态转移矩阵和奖励函数。 对于强化学习初学者来说,理解并动手实现这些算法是非常有益的。不仅可以帮助他们巩固理论知识,还能让他们在实践中遇到问题,从而加深对强化学习的理解。通过MATLAB的可视化功能,还可以观察到算法在不同环境下的行为,这对于理解和调试算法至关重要。 在学习这个MATLAB程序时,建议先熟悉动态规划的基本概念,然后逐步分析代码,理解每一步的目的和作用。同时,尝试修改参数或环境设置,观察这些变化如何影响结果,这样可以更好地掌握动态规划在强化学习中的应用。
2025-10-14 21:57:37 32KB matlab 动态规划 强化学习
1
在本实践项目中,我们探讨了如何利用OpenAI的Gym库进行Q-learning强化学习算法的应用。Gym是一个广泛使用的Python库,它为各种环境提供了一个标准接口,这些环境可以用于训练和测试强化学习算法。这里,我们专注于“FrozenLake”环境,这是一个经典的学习问题,旨在模拟一个简单的迷宫游戏,其目标是通过一个冰湖到达目的地。 **Q-learning强化学习基础** Q-learning是一种无模型的、离策略的强化学习算法,它的核心思想是通过构建Q表来学习一个智能体在给定状态下的最优行动。Q表记录了在每种状态下执行每种动作所能获得的期望奖励。随着时间的推移,通过不断更新Q表,智能体逐渐学会哪种行为序列会带来最大的长期奖励。 **Gym环境的搭建** 在Gym库中,环境通常通过`gym.make()`函数创建。例如,要创建“FrozenLake”环境,我们可以编写`env = gym.make('FrozenLake-v0')`。这个环境提供了`reset()`和`step()`两个主要方法。`reset()`用于初始化环境并返回初始状态,而`step()`则接受一个动作作为输入,执行该动作并返回新的状态、奖励、是否游戏结束以及额外的信息。 **FrozenLake环境的源程序结构** “FrozenLake”环境的源代码展示了如何实现一个简单的MDP(Markov Decision Process)环境。它包括状态空间、动作空间、状态转移概率和奖励函数等组件。在源码中,你可以看到如何定义湖的布局、每个位置的状态(如安全、冰裂或目标)以及智能体可能执行的动作(如上、下、左、右)。 **Q-learning在FrozenLake中的应用** 在解决FrozenLake问题时,Q-learning的步骤如下: 1. 初始化Q表,将所有状态-动作对的值设为0。 2. 对环境进行多次迭代,每次迭代执行以下步骤: a. 选择一个动作,根据当前策略(如ε-greedy策略)。 b. 在环境中执行这个动作,观察新状态和获得的奖励。 c. 更新Q表,使用Q-learning的更新公式:`Q(s, a) <- Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a))`,其中s是旧状态,a是执行的动作,s'是新状态,α是学习率,γ是折扣因子,r是奖励。 d. 如果游戏结束,停止迭代;否则,将新状态设置为当前状态并继续。 **实现与优化** 在实践中,可能会采用不同的技术来提高Q-learning的性能,如经验回放缓冲区、目标网络稳定性和策略改进。同时,为了防止过度拟合,可以引入探索策略如ε-greedy,随着学习的进行逐渐减少ε值。 通过这样的实践,你可以深入理解Q-learning的工作原理,以及如何将强化学习应用于解决实际问题。Gym库提供了丰富的环境,可以用来扩展你的学习,如Atari游戏、机器人控制等,进一步提升你的强化学习技能。
2025-10-13 10:26:32 9KB 强化学习
1
在本文中,我们将深入探索强化学习这一人工智能领域中的关键子领域。强化学习是一种让智能体能够通过与环境的交互来学习和优化策略的方法。为了帮助读者更好地理解这一过程,本文以一个4x4网格世界为例,逐步指导智能体如何在这样一个简单环境中进行探索、决策和学习。 我们将介绍强化学习的基本概念和组成要素。在强化学习中,智能体通过与环境进行交互,不断地试错,来学习到在特定状态下采取特定行动会带来怎样的回报。智能体的目标是最大化长期累积回报,即长期奖励的总和。这通常通过一种称为“策略”的函数来实现,策略定义了在每个状态下智能体应选择哪个行动。 在网格世界环境中,我们可以将智能体想象成一个机器人,在一个由4x4个格子组成的网格上移动。每个格子都可以是不同的状态,比如起始点、目标点、危险区域或是可以获取奖励的点。智能体在网格中移动时,会根据当前的位置采取行动,并根据结果获得即时回报。学习过程的目标是让智能体找到一条从起始点到目标点的路径,同时最大化其获取的总奖励。 接下来,文章将详细阐述如何构建一个基本的强化学习模型,包括状态空间、行动空间、奖励函数和折扣因子等关键概念。状态空间是指智能体可能遇到的所有状态的集合,行动空间是指智能体可以选择的所有行动的集合。奖励函数定义了智能体在每个状态下采取某个行动后所能获得的即时奖励,而折扣因子则用来调节未来奖励的重要性,它是一个介于0和1之间的数,表示未来奖励的价值随时间递减的速度。 在介绍了强化学习的理论基础之后,文章将进一步解释如何通过算法来实现强化学习。常见的算法包括Q学习和SARSA等。Q学习是一种没有模型的离线学习方法,智能体通过更新状态-行动对的Q值来学习最优策略。Q值是一个预期回报的估计值,表示从当前状态开始,执行特定行动后,随后能够获得的累积回报。SARSA算法与Q学习类似,但其更新规则是基于智能体实际采取的行动和得到的结果进行的,因此它属于一种在线学习方法。 在实际操作过程中,我们将通过编写程序代码,来实现上述概念和算法。将指导读者如何搭建一个4x4网格世界环境,初始化智能体的策略和Q值表,并执行迭代过程,让智能体通过试错学习如何在网格中导航。我们还将展示如何设置不同的奖励和障碍物,以及如何调整学习参数以优化智能体的表现。 文章最后将总结强化学习的学习成果,并讨论其在现实世界问题中的潜在应用。强化学习作为人工智能的一个分支,正被广泛应用于机器博弈、机器人控制、资源管理、交通信号控制等多个领域。通过本教程的学习,读者将掌握强化学习的基本理论和实践技能,为深入研究这一领域打下坚实的基础。
2025-10-13 10:26:08 36KB 强化学习
1