标题中的“yolo行人跌倒检测数据集”指的是一个用于训练和评估YOLO(You Only Look Once)模型的数据集,该模型专门设计用于检测行人在图像中的跌倒情况。YOLO是一种实时目标检测系统,因其高效性和准确性在计算机视觉领域广泛应用。 YOLO,即You Only Look Once,是一个端到端的深度学习框架,它能够直接从原始图像中预测出边界框和类别概率,从而实现对目标的快速检测。YOLO的核心在于它的网络架构,通常包括卷积神经网络(CNN)层,用于特征提取,以及后续的检测层,用于生成边界框和分类得分。 数据集是机器学习和深度学习项目的基础,这个数据集包含1440张图片,每张图片都与相应的txt格式标注文件关联。txt标注文件通常包含了每个目标对象的边界框坐标和类别信息。对于行人跌倒检测,这些标注可能详细指明了跌倒行人的位置、大小以及状态(如跌倒还是站立)。 在YOLOv8这一标签中,我们可以推断这个数据集可能是基于较新的YOLO版本进行训练或测试的。YOLO的每个版本都有其独特的改进和优化,比如更快的速度、更高的精度或者更少的计算资源需求。YOLOv8可能引入了新的网络结构、损失函数或是训练策略,以提高对跌倒行人的识别能力。 至于数据集的使用,通常包括以下几个步骤: 1. 数据预处理:将图片和对应的txt标注文件加载到内存中,可能需要进行归一化、缩放等操作,使其适应模型的输入要求。 2. 划分数据集:将数据集分为训练集、验证集和测试集,用于模型训练、参数调整和性能评估。 3. 模型训练:使用训练集对YOLO模型进行训练,通过反向传播更新权重,以最小化预测结果与实际标注之间的差距。 4. 模型评估:使用验证集监控模型在未见过的数据上的性能,避免过拟合。 5. 超参数调整:根据验证集的表现调整模型的超参数,如学习率、批次大小等。 6. 最终测试:最后在独立的测试集上评估模型的泛化能力,确保模型在新数据上的表现良好。 总结来说,这个数据集是针对行人跌倒检测的,可以用于训练或改进YOLO模型,特别是其最新版本YOLOv8,以提高在现实世界场景中检测跌倒事件的能力。通过合理的数据处理和模型训练,可以构建一个对行人的安全起到预警作用的应用,尤其适用于监控摄像头等安全系统中。
2025-06-24 15:18:11 65.3MB 数据集 yolo
1
GTSDB数据集,即德国交通标志数据集,是专门为交通标志检测任务设计的,具有多个类别的数据集。GTSDB数据集在YOLO(You Only Look Once)格式中已被成功应用,表明它可以与YOLO模型配合使用,用于实时目标检测。YOLO是一种流行的计算机视觉算法,以其速度和准确性在实时目标检测任务中备受青睐。数据集包含43个不同的交通标志分类,涵盖了德国道路上常见的几乎所有类型标志。 在处理此数据集时,YOLO模型需要在训练过程中识别和标记这些43种类别的交通标志。模型在检测阶段能够快速识别出图像中的交通标志,并确定其类别。这使得YOLO格式的GTSDB数据集非常适合于实时交通标志检测系统,这类系统在自动驾驶和驾驶辅助系统中具有广泛的应用前景。 GTSDB数据集之所以重要,是因为它为研究人员提供了一个良好的起点来研究和改进交通标志识别技术。数据集的质量直接影响到模型训练的效果,高质量的数据集可以提高模型识别的准确性和鲁棒性。此外,由于不同国家和地区的交通标志可能有所差异,德国交通标志数据集的发布也为其他国家的研究者提供了借鉴和参考,有助于推动交通标志识别技术的国际交流和合作。 在机器学习和深度学习领域,数据集的格式对于算法的训练和测试至关重要。YOLO格式的数据集要求标注信息以特定的结构存储,以便于算法快速读取和处理。这样的格式化数据集使得研究者能够更加便捷地进行实验和算法的迭代优化。GTSDB数据集的YOLO格式化版本,无疑降低了研究人员在此领域进行实验的门槛,使得交通标志检测技术的研究可以更加专注于算法本身,而非数据预处理的繁琐工作。 由于GTSDB数据集包含了真实的交通标志图像,因此它也为模拟实际交通环境提供了可能。在自动驾驶技术的研发中,模拟真实的交通环境至关重要,它可以帮助研究者更好地测试和评估他们的系统在复杂环境下的性能。而且,GTSDB数据集的多样性和丰富性确保了训练出的模型具有更好的泛化能力,能够适应不同的道路和光照条件。 GTSDB数据集的YOLO格式化版本不仅为交通标志检测研究提供了高质量的数据资源,而且极大地促进了相关领域的研究进展。随着自动驾驶技术的不断进步,交通标志识别作为其中的关键一环,其重要性不言而喻。未来,随着更多研究的深入和技术的发展,我们可以预见交通标志检测将变得更加精确和高效,进而推动整个自动驾驶技术的成熟和普及。
2025-06-18 12:45:19 95.38MB
1
从kaggle上的RLE格式转过来的,一共有6666张图片和标签,classes文件已经在包里了,直接用labelimg打开即可,种类是1234,因为源文件的RLE标签里的分类就是这几个数字,没有声明数字对应的缺陷种类是什么 今年年初搞的,不过这个数据集想获得比较好的训练结果似乎很难
2025-05-22 20:53:52 616.18MB 数据集
1
标签类别:names: ['bubble', 'petrol'] 资源文件内包含:资源图片数据集,YOLO格式的标注文件,data.yaml是数据集配置文件。 训练集和验证集已经完成划分!!! 道路油污识别是城市交通管理和环境保护中的重要任务。油污不仅影响道路的清洁度和美观度,还可能对车辆行驶安全构成威胁。然而,传统的油污检测方法主要依赖人工视觉检查,这种方法不仅耗时、成本高,而且结果的准确性和可重复性差。因此,开发一种自动化、智能化的油污识别系统显得尤为重要。 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
2025-05-16 15:52:01 13.97MB 数据集 目标检测 深度学习 YOLO
1
抽烟检测数据集 yolo 总共3224张图片,已经标注
2025-05-16 10:41:47 345.38MB 抽烟检测
1
睡岗检测数据集 yolo 1507张图片,数据已标注。
2025-05-15 14:26:37 177.51MB 数据集
1
VOC2007数据集是计算机视觉领域中一个广泛使用的图像识别和对象检测的数据集,全称为PASCAL Visual Object Classes Challenge 2007。这个数据集由英国剑桥大学计算机实验室创建,旨在推动多类物体检测算法的研究。VOC2007包含了20个不同的类别,如人、自行车、狗、飞机等,涵盖了日常生活中的多种常见对象。 YOLO(You Only Look Once)是一种实时目标检测系统,以其高效和准确的性能在计算机视觉领域广受欢迎。YOLOv1在2016年首次提出,随后出现了YOLOv2、YOLOv3、YOLOv4和YOLOv5等多个版本,每个新版本都在速度和精度上有所改进。YOLO的核心思想是将图像分割为网格,并预测每个网格内的物体类别和边界框。 本压缩包提供的VOC2007数据集已经转换为YOLO格式,这意味着它已经被整理好,可以直接用于训练YOLO模型,无需额外的数据预处理步骤。数据集被划分为三个部分:训练集(2501个样本)、验证集(2510个样本)和测试集(4952个样本)。这种划分有助于模型的训练和验证,确保模型的泛化能力。 "labels"文件夹中包含了与图像对应的标注文件,这些文件通常以.txt格式存储,每行代表图像中一个对象的信息,包括该对象在图像中的边界框坐标(用相对比例表示)以及对应的类别标签。例如,“0.1 0.2 0.5 0.6 person”表示图像中有一个“person”类别的对象,其左上角坐标为(0.1, 0.2),右下角坐标为(0.5, 0.6)。 "images"文件夹则包含实际的图像文件,这些图像用于训练和评估YOLO模型。每个图像文件名通常与其对应的标注文件名相同,这样可以方便地将图像和其标注信息对应起来。 使用此数据集训练YOLO模型时,首先需要配置YOLO的训练脚本,指定训练集、验证集和标签文件的位置。然后,选择合适的超参数,比如学习率、批大小、迭代次数等。训练过程中,可以定期在验证集上进行验证,观察模型性能的提升。训练完成后,使用测试集评估模型的最终性能,通常使用指标如平均精度(mAP)来衡量。 对于YOLOv5,可以利用其提供的工具包进行数据预处理、训练和评估。例如,使用`yaml`配置文件定义数据路径和训练参数,运行`train.py`进行训练,使用`evaluate.py`进行测试。此外,YOLOv5还支持数据增强,如随机翻转、裁剪和色彩扰动,以提高模型的泛化能力。 这个VOC2007数据集的YOLO格式版本是一个非常有价值的资源,可以帮助研究人员和开发者快速进行物体检测模型的训练和优化,特别是对于那些希望使用YOLO系列模型的用户。通过利用这个数据集,我们可以深入研究和比较不同YOLO版本的性能,或者开发新的目标检测技术。
2025-05-01 18:56:57 338.2MB 数据集 VOC2007 yolo yolov5
1
PKLot数据集包含从监控摄像机帧中提取的12,416张停车场图像。有晴天、阴天和雨天的图像,停车位被标记为有人或空着。 附带数据集对应源码及训练好的车位占用模型。 学生私聊我留下邮箱及数据集名称,可免费发送,回复可能没那么及时请见谅! 如果您在有关您的研究的出版物中引用PKLot论文并注明来源,则可以使用PKLot数据库。 Almeida, P., Oliveira, L. S., Silva Jr., E., Britto Jr., A., Koerich, A., PKLot-A 用于停车场分类的强大数据集, 专家系统应用物理学报,42(11):497 - 497,2015。
2025-04-26 15:04:25 842.49MB 数据集
1
包含3440张cfcf穿越火线角色图片,已标注为YOLO txt格式,已划分为训练集、验证集和测试集,拿到手即可直接开始训练。可用于YOLO目标检测模型训练,机器学习,深度学习,人工智能,python,pycharm。
2025-04-19 07:44:10 191.83MB 数据集 YOLO Python 目标检测
1
使用场景:yolov8模型训练 相关内容:数据集+yaml文件 数据集:学生课堂行为:举手(handRaising)、阅读(reading)、睡觉(sleeping)、写作(writing)
2025-04-10 20:27:46 233.34MB 数据集 yolo 课堂行为
1