深度学习神经网络模型权重
2022-08-07 12:04:58 107.35MB 深度学习
1
darknet是一个较为轻型的完全基于C与CUDA的开源深度学习框架,其主要特点就是容易安装,没有任何依赖项(OpenCV都可以不用),移植性非常好,支持CPU与GPU两种计算方式。Darknet的优势: darknet完全由C语言实现,没有任何依赖项,当然可以使用OpenCV,但只是用其来显示图片、为了更好的可视化; darknet支持CPU(所以没有GPU也不用紧的)与GPU(CUDA/cuDNN,使用GPU当然更块更好了); 正是因为其较为轻型,没有像TensorFlow那般强大的API,所以给我的感觉就是有另一种味道的灵活性,适合用来研究底层,可以更为方便的从底层对其进行改进与扩展
2022-06-27 16:26:02 27.94MB darknet 预训练模型 权重文件 深度学习
1
visual studio2019手写数字识别工程(权重文件通用) 1.no_gpu_darknet版 yolov3手写数字识别 训练好 的模型权重 。基于opencv3.16版本库函数,附带已配置好的工程源码no_gpu_darknet版。已训练好,可直接使用。 2.一万多数据训练得到,准确率达95%以上 3.目标类别名为0,1,2,3,4,5,6,7,8,9 4.可以 检测图片、视频和调用摄像头,需要选择相应的代码语段 5.依据自己的电脑路径打开darknet_no_gpu.sln,然后配置好opencv3.16环境即可直接运行 E:\darknet-master_2\darknet-master_2\darknet-master\build\darknet\darknet_no_gpu.sln
2022-06-17 21:05:31 413.7MB 数字识别 yolo 计算机视觉
FCOS3D是基于anchor-free网络FCOS演变而来,作者采用FCOS检测器作为baseline的目的是考虑到FCOS在处理遮挡和尺度变化问题上具有优势,从网络结构对比来看,FCOS3D的backbone和neck部分沿用FCOS的结构,检测头head部分因regression targets不同有所差异。
2022-06-17 21:05:30 389.97MB FCOS3D 目标检测 模型 权重
预告性文本模型权重.zip
2022-06-16 11:04:00 34.61MB 数据集
PyTorch 模型部署到 ONNX,实现一个超分辨率模型,并把模型部署到 ONNX Runtime 这个推理引擎上。
2022-05-19 17:06:18 255KB 文档资料 综合资源 pytorch python
1
云模型matlab代码,可以直接使用
2022-05-12 15:28:40 1KB matlab 云模型 权重
1
TransUet官方代码中需要的预训练权重 这个是最小的一个模型权重,需要其他权重的可以私信我。
2022-04-06 03:11:28 439.85MB 网络 模型权重
1
包含4个权重文件,yolov5l ,yolov5m , yolov5s, yolov5x 。 从谷歌云盘下载的,4个文件4个积分不多吧.
2022-02-08 17:13:46 311.13MB yolov5 模型权重 目标检测 预训练文件
1
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
2022-01-25 17:24:07 87.07MB resnet 预训练模型 权重文件 深度学习
1