只为小站
首页
域名查询
文件下载
登录
Python数字信号处理:SciPy音频特征提取.pdf
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-06-26 21:33:33
4.62MB
python
1
LSTM-VAE在时间序列数据降维与特征提取中的Python实现及其应用 LSTM
内容概要:本文介绍了LSTM-VAE(基于长短期记忆网络的变分自编码器)在时间序列数据降维和特征提取中的应用。通过使用MNIST手写数据集作为示例,详细展示了LSTM-VAE的模型架构、训练过程以及降维和重建的效果。文中提供了完整的Python代码实现,基于TensorFlow和Keras框架,代码可以直接运行,并附有详细的注释和环境配置说明。此外,还展示了如何通过可视化手段来评估模型的降维和重建效果。 适合人群:对深度学习有一定了解的研究人员和技术开发者,尤其是关注时间序列数据分析和降维技术的人群。 使用场景及目标:适用于时间序列数据的降维、特征提取、数据压缩、数据可视化以及时间序列的生成和还原任务。目标是帮助读者掌握LSTM-VAE的原理和实现方法,以便应用于实际项目中。 其他说明:本文提供的代码可以在本地环境中复现实验结果,同时也支持用户将自己的数据集替换进来进行测试。
2025-06-22 23:22:32
498KB
1
基于传感器与算法的中医把脉仿真-脉搏数据收集与特征分析的Python实现
内容概要:本文介绍了一个用于模拟中医把脉的机器人程序,旨在利用传感器和相关算法分析脉搏特征并据此作出初步健康评估。程序主要分为四个步骤:首先采用脉搏传感器采集原始数据;接着对获取到的数据做预处理操作,如滤除噪音干扰;然后从清洗后的时序流中抽取有价值的特征点,例如脉冲频率、振幅大小及节奏均匀度;最后依照既定规则集评判患者的身体机能状态。同时提供了完整的Python示例代码,展示了如何构建一套简化的模拟环境。 适合人群:对医疗信息化感兴趣的软件开发者、研究人员以及高等院校医学生等相关专业群体,特别是希望了解智能诊断技术或者对中医现代化有所涉猎的人士。 使用场景及目标:可用于教学演示、科研项目中,作为探索传统医学与现代信息技术交叉融合的研究工具,致力于让非专业人士直观地感受到数字诊疗系统的工作流程及其背后的科学原理。 其他说明:尽管提供的实例仅为简化版本,在真实环境下还需要接入真实的硬件设备并进一步优化算法精度与鲁棒性,才能达到临床应用标准。此外,为了确保准确性,还需长期积累足够的病例样本供训练调优之用。
2025-06-22 17:07:09
17KB
Python
信号处理
机器学习
1
【计算机视觉】YOLOv11引入UNetv2的SDI模块:提升多层次特征融合与小目标检测精度
内容概要:本文详细介绍了YOLOv11目标检测算法的改进,特别是引入了来自UNetv2的多层次特征融合模块——SDI(Selective Deformable Integration)。YOLOv11在保持高速推理的同时,通过采用EfficientNet主干网络、PANet和FPN Neck模块及多种注意力机制,显著提升了检测精度。SDI模块通过选择性融合不同尺度特征、结合可变形卷积技术,增强了细节信息的提取,提高了多尺度特征融合能力,改进了小目标检测精度。实验结果显示,YOLOv11在COCO和VOC数据集上的mAP分别从40.2%提升至43.7%、从77.5%提升至80.3%,且FPS保持稳定。; 适合人群:对目标检测算法有一定了解的研究人员、工程师及深度学习爱好者。; 使用场景及目标:①了解YOLOv11的创新技术和优化方向;②掌握SDI模块的工作原理及其在目标检测中的应用;③研究多层次特征融合、可变形卷积等技术对模型性能的影响。; 其他说明:本文不仅展示了YOLOv11的技术细节,还通过实验验证了SDI模块的有效性,为未来目标检测算法的发展提供了新的思路。建议读者结合实际应用场景,深入研究SDI模块的实现与优化方法。
2025-06-20 10:09:21
17KB
目标检测
1
中国数字经济与绿色发展耦合协调的时空特征及驱动机制数据集(2010-2019)
作者以中国30个省(自治区、直辖市)为研究对象(西藏、香港、澳门与台湾的数据暂缺),基于数字经济与绿色发展耦合协调机理建构数字经济和绿色发展指标体系;采用纵横向拉开档次法和耦合协调度模型测算数字经济水平、绿色发展水平以及二者的协调度,运用GIS空间分析、空间自相关分析和Dagum基尼系数揭示协调度的时空
特征;
进而借助QAP回归分析探究二者耦合协调空间差异的驱动机制,得到中国数字经济与绿色发展耦合协调的时空特征及驱动机制数据集(2010-2019)。该数据集内容包括2010-2019年中国以下数据:(1)30省数字经济水平、绿色发展水平以及数字经济与绿色发展协调度时序变化;(2)全国及东、中、西部数字经济水平、绿色发展水平变化趋势;(3)耦合协调类型占比;(4)邻接空间权重矩阵;(5)数字经济与绿色发展协调度空间自相关类型、区域差异及分解结果;(6)30省数字经济与绿色发展协调度与各驱动因素的区域差异矩阵。该数据集存储为.xlsx格式,1个数据文件,数据量为120 KB。邓宗兵, 肖沁霖, 王炬等. 中国数字经济与绿色发展耦合协调的时空特征及驱动机制[J]. 地理学报, 2024, 79(4): 971-990.
2025-06-19 16:52:12
120KB
数字经济
绿色发展
耦合协调
时空特征
1
基于sEMG和IMU的手语手势识别,包括数据收集、数据预处理(去噪、特征提取,分割)、神经网络搭建、实时识别等.zip
手语手势识别是一种重要的通信方式,特别是在为聋哑人提供无障碍交流方面发挥着关键作用。随着科学技术的进步,尤其是生物信号处理和机器学习领域的快速发展,基于sEMG(表面肌电信号)和IMU(惯性测量单元)的手势识别技术已经成为研究热点。本项目涵盖了从数据收集到实时识别的全过程,以下将详细介绍其中的关键知识点。 **数据收集**是整个系统的基础。sEMG传感器被放置在手部肌肉上,记录肌肉收缩时产生的电信号。这些信号反映了手指和手腕运动的信息。同时,IMU通常包含加速度计、陀螺仪和磁力计,用于捕捉手部的三维姿态和运动。通过同步采集sEMG和IMU数据,可以得到丰富的手势信息。 **数据预处理**是提高识别准确性的关键步骤。**去噪**是必要的,因为sEMG信号易受噪声干扰,如电源噪声、肌纤维颤动等。通常采用滤波技术,如 Butterworth、Chebyshev 或巴特沃斯滤波器,来去除高频和低频噪声。接着,**特征提取**是识别的核心,这可能包括幅度特征(如均值、峰值、方差等)、时间域特征(如上升时间、下降时间)和频率域特征(如功率谱密度、谐波分析)。此外,**数据分割**也很重要,通常根据手势的起始和结束点进行切分,确保每个样本对应一个完整的手势。 接下来,**神经网络搭建**是模型训练的核心。可以选择多种神经网络架构,如卷积神经网络(CNN)利用其在图像处理中的强大能力处理sEMG的时间序列数据,或者循环神经网络(RNN)、长短时记忆网络(LSTM)捕捉时间序列的依赖关系。更先进的模型如门控循环单元(GRU)也可以考虑,它们在处理序列数据时能更好地处理长期依赖问题。 在模型训练过程中,**超参数调整**至关重要,包括学习率、批量大小、网络层数、节点数量等。**优化器**的选择也会影响训练效果,如随机梯度下降(SGD)、Adam或RMSprop。同时,为了避免过拟合,通常会采用**正则化**(如L1、L2正则化)和**dropout**策略。 实现**实时识别**需要优化模型以满足实时性能的要求。这可能涉及到模型轻量化、硬件加速(如GPU或专门的AI芯片)以及高效的推理算法。为了保证流畅的用户体验,识别速度和准确性之间的平衡是实时识别系统设计的关键。 基于sEMG和IMU的手势识别是一个涉及生物信号处理、数据预处理、深度学习模型构建和实时应用等多个领域的复杂工程。这个项目涵盖了这些关键技术点,对于理解手语识别系统及其在现实世界中的应用具有很高的价值。
2025-06-19 16:47:53
39.78MB
1
深度学习基于PyTorch的迁移学习实战指南:模型微调与特征提取技术详解及应用案例分析
内容概要:本文深入探讨了基于 PyTorch 的迁移学习实战,重点讲解了模型微调和特征提取的最佳实践方法。文章首先介绍了迁移学习的基本概念及其在深度学习中的重要性,解释了如何通过迁移学习将已有模型的知识迁移到新任务中,以减少训练时间和计算资源的消耗。随后,详细描述了 PyTorch 的特性及其在迁移学习中的优势,包括动态计算图、丰富的工具和接口等。接着,文章分步骤介绍了模型微调的具体操作,如预训练模型的选择、冻结与解冻层设置、调整模型结构、定义损失函数和优化器、数据集准备与预处理、模型训练与评估等。此外,还讨论了特征提取的原理和方法,包括使用预训练模型的特定层进行特征提取和构建自定义特征提取网络,并展示了特征在图像分类、目标检测和图像分割等下游任务中的应用。最后,通过花卉分类和目标检测两个实战案例,展示了迁移学习的实际应用效果,并总结了常见问题及其解决方案,展望了迁移学习和 PyTorch 的未来发展。 适合人群:具备一定编程基础,对深度学习和迁移学习有一定了解的研发人员和技术爱好者。 使用场景及目标:①理解迁移学习的基本原理及其在深度学习中的应用;②掌握基于 PyTorch 的模型微调和特征提取的具体操作;③通过实战案例学习如何在实际项目中应用迁移学习技术,提高模型性能。 其他说明:本文不仅提供了详细的理论阐述和代码示例,还通过实战案例帮助读者更好地掌握迁移学习技术。在学习过程中,建议读者结合实际项目进行实践,并根据具体需求调整模型和参数设置。
2025-06-18 23:38:52
54KB
PyTorch
迁移学习
模型微调
特征提取
1
100多类别的不同动物特征集合归类分类数据
数据集包含100多种动物的特征 100 classes Animal Class rat vicuna antelope giraffe panda ... 可用作机器学习使用 源码地址:https://www.kaggle.com/datasets/justin900429/100-classes-of-different-animals
2025-06-15 17:05:51
21.96MB
数据集
机器学习
1
上海地区软土次固结系数的变化特征及影响因素
预测软土地基次固结沉降,取上海祁连山南路地铁站地层土样进行三轴压缩固结试验,分析次固结系数的变化特征并探究各个影响因素对次固结系数的影响,主要对不同土性指标、不同载荷条件次固结系数变化特征进行试验研究.结果表明:次固结系数会随着土性指标的变化而变化,其影响力不会随载荷的变化而减弱,表明土性指标对次固结系数影响起主导作用;次固结系数也会随载荷条件的变化而变化,但这种影响与土层所在的位置有关,对于深部土层以及压缩性较低的土层这种影响可以忽略不计,载荷因素对次固结系数影响起辅助作用.
2025-06-02 12:22:48
260KB
三轴试验
土性指标
载荷因素
1
基于时间序列预测的组合模型,CNN-LSTM-Attention、CNN-GRU-Attention的深度学习神经网络的多特征用电负荷预测 关于模型算法预测值和真实值对比效果如下图所示,同时利用R2
基于时间序列预测的组合模型,CNN-LSTM-Attention、CNN-GRU-Attention的深度学习神经网络的多特征用电负荷预测。 关于模型算法预测值和真实值对比效果如下图所示,同时利用R2、MAPE、RMSE等评价指标进行模型性能评价。 关于数据:利用的是30分钟一采样的电力负荷单特征数据,其中还包含对应的其他影响特征如温度、湿度、电价、等影响影响因素;具体如图详情图中所示。 个人编码习惯很好,基本做到逐行逐句进行注释;项目的文件截图具体如图详情所示。 时间序列预测是一种通过分析历史数据点来预测未来数据点的方法,尤其在电力系统中,准确预测用电负荷对于电力调度和电网管理至关重要。随着深度学习技术的发展,研究者们开始尝试将复杂的神经网络结构应用于时间序列预测,以提升预测的准确度和效率。在本次研究中,提出了一种基于深度学习的组合模型,该模型结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)和注意力机制(Attention),以实现对多特征用电负荷的预测。 CNN是一种深度学习模型,它能够在数据中自动学习到层次化的特征表示,特别适合处理具有空间特征的数据。在电力负荷预测中,CNN能够提取和学习电力数据中的时序特征,例如日周期性和周周期性等。 LSTM是一种特殊的循环神经网络(RNN),它通过引入门机制解决了传统RNN的长期依赖问题,能够有效捕捉时间序列中的长期依赖关系。而GRU作为LSTM的一种变体,它通过减少门的数量来简化模型结构,同样能够学习到时间序列数据中的长期依赖关系,但计算复杂度相对较低。 注意力机制是一种让模型能够聚焦于输入数据中重要部分的技术,它可以使模型在处理序列数据时动态地分配计算资源,提高模型对重要特征的识别能力。 在本研究中,通过结合CNN、LSTM/GRU以及Attention机制,构建了一个强大的组合模型来预测用电负荷。该模型能够利用CNN提取时间序列数据中的特征,通过LSTM/GRU学习长期依赖关系,并通过Attention机制进一步强化对关键信息的捕捉。 在数据方面,研究者使用了30分钟一采样的电力负荷单特征数据,并加入了温度、湿度、电价等多个影响因素,这些都是影响用电负荷的重要因素。通过整合这些多特征数据,模型能够更全面地捕捉影响用电负荷的多维度信息,从而提高预测的准确性。 为了评估模型性能,研究者采用了多种评价指标,包括R2(决定系数)、MAPE(平均绝对百分比误差)和RMSE(均方根误差)。这些指标能够从不同角度反映模型预测值与真实值的接近程度,帮助研究者对模型的性能进行综合评价。 研究者在文章中详细展示了模型算法预测值和真实值的对比效果,并对结果进行了深入分析。此外,项目文件中还有大量代码截图和注释,体现了研究者良好的编程习惯和对项目的认真态度。 本研究提出了一种结合CNN、LSTM/GRU和Attention机制的深度学习组合模型,该模型在多特征用电负荷预测方面展现出较好的性能。通过对历史电力负荷数据及相关影响因素的学习,模型能够准确预测未来用电负荷的变化趋势,对于电力系统的运营和管理具有重要的应用价值。
2025-05-30 13:51:55
425KB
数据仓库
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
智能微电网中利用粒子群算法实现多目标优化(有完整数据可运行).zip
SSM外文文献和翻译(毕设论文精品).doc
知网情感词典(HOWNET)
JPEG的Matlab实现
麻雀搜索算法(SSA)优化bp网络
机械臂避障路径规划仿真 蚁群算法 三维路径规划
工程伦理_李正风,丛杭青,王前_北京:清华大学出版社 , 2016.08_P329.pdf
航迹融合算法MATLAB仿真程序
适用于eNSP 1.3.00 可加载的USG6000V防火墙设备包
简易示波器-精英板.zip
C4.5决策树算法的Python代码和数据样本
东南大学英语技术写作慕课所有答案
校园网规划与设计(报告和pkt文件)
中国地面气候资料日值数据集(V3.0)2014-2019.zip
全国道路网SHP数据.zip
最新下载
SM2258XT_HY3D-V4_PKGS0402A_FWS0330B0-海力士3DV4.rar
tachie提取工具
CD4017的网线测试仪(原理图)Multisim仿真
Excel农历插件_V1.3.9.zip
群辉连接旧爱普生L380+L360PPD驱动文件
212协议相关工具.zip
万能BIOS刷新工具Universal Flash Utility V8.93
Rockey系列加密狗硬复制工具
深入浅出javascript源代码
Oracle 11g OCP全套官方原版ppt
其他资源
dhtmlxGantt最新版,甘特图,源码,示例,例子,资料齐全
openGL两方法绘制六角星及上色
一个DBF文件读写的delphi控件
矩阵运算c语言单片机可运行
基于GN、LPA、LFM三种算法对Karate的社区发现
STAR-CCM+中文案例教程 9.06
小型跑酷游戏
WPF使用Socket实现客户端服务器通信
C语言与MATLAB接口 编程与实例 李传军编着.pdf
V2X车路协同系统设计方案综述
思维导图思维导图软件
WDK6000.zip
27.深度解密二十七:百度搜索引擎“视频”端的排名规则详解.pdf
有用的脚本::snail:有用的脚本,使开发人员的日常生活更加轻松快乐,涉及到Java,shell等-源码
extjs-4.1.1 ExtJs所有文档及库文件
spring任务task配置
文泉驿字体大全(包括18、20、22、24、28、36号大字体)
ERDAS IMAGINE 2014 Patches + Licenses
Verilog语言实现智能6层单电梯
可变分区管理方式下最先适应分配算法
手把手教你学DSP配套资料
( 人工蜂群算法求解无约束优化问题(matlab源码+求解问题)无误版