人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2026-01-25 14:40:41 169.29MB python 人工智能 ai
1
文章介绍了在ruoyi-vue-pro项目中引入ai模块时遇到的报错问题,具体报错信息为无法找到cn.iocoder.boot:yudao-module-ai-biz:pom:2.4.1-jdk8-SNAPSHOT依赖项。解决方法是通过前往yudao-server的pom文件,打开相关注释来解决依赖问题。该问题可能与依赖仓库配置或版本冲突有关,通过简单的配置调整即可解决。 在进行基于ruoyi-vue-pro项目开发时,开发者可能会遇到需要引入AI模块的情况。这一过程中,可能会遇到一些技术上的挑战,尤其是在处理项目依赖的时候。其中,一个常见的问题就是无法找到指定版本的cn.iocoder.boot:yudao-module-ai-biz:pom:2.4.1-jdk8-SNAPSHOT依赖项。这个依赖项是AI模块的核心部分,如果不能正确地解决此依赖问题,整个项目的AI功能可能都无法正常运行。 遇到这类问题时,通常的解决方法是检查项目的Maven依赖管理文件pom.xml,特别是yudao-server的pom文件。开发者需要确认是否有相关的依赖项被注释掉了,或者版本号是否正确。有时候,版本号的不一致可能会导致Maven无法正确解析依赖。在这种情况下,开发者需要确保使用的依赖项版本与项目中其他模块版本保持兼容,或者尝试使用项目开发者提供的最新版本。 除了依赖项版本不一致的问题,还可能涉及到依赖仓库的配置问题。在Maven中,如果指定的仓库不可用,那么依赖项就无法被下载,从而导致构建失败。遇到这种问题时,开发者需要检查Maven的settings.xml文件,确保仓库配置正确,并且网络可以正常访问这些仓库。 此外,开发者还需要检查是否有版本冲突的问题。有时候,不同的模块之间可能存在版本不兼容的问题,这需要开发者仔细检查各模块的依赖关系,确保所有模块之间能够和平共处。有时候,解决版本冲突需要升级或降级某些模块的版本,以便与主项目或其他模块兼容。 解决完依赖问题后,项目应该能够正常构建并运行。然而,这个过程也可能暴露出其他潜在的问题,如代码中的硬编码问题或者配置文件中的错误。因此,即使解决了直接的依赖问题,开发者也应当全面检查整个项目,确保所有配置都正确无误。 在实际开发过程中,了解和掌握Maven的依赖管理机制是非常重要的。它不仅可以帮助开发者解决项目中的依赖问题,还可以通过熟练使用Maven仓库管理和项目构建过程,提升开发效率和项目质量。 考虑到上述问题的复杂性,开发者在遇到类似问题时,应当仔细阅读官方文档,了解各个模块的具体功能和依赖关系。同时,也可以参考社区论坛和开发者群体中的经验分享,了解他人是如何解决类似问题的。通过这些信息,开发者可以更快地定位问题所在,并采取有效的措施进行修复。 此外,与依赖管理紧密相关的是项目的持续集成和持续部署(CI/CD)流程。在这些流程中,依赖管理是非常重要的一环。良好的CI/CD实践可以帮助开发者更频繁、更快速地部署代码,同时也能够确保代码质量。因此,开发者也需要熟悉并应用这些现代软件开发的实践方法,以提升开发效率和软件质量。 对于遇到的技术问题,记录和总结是非常必要的。开发者在解决完依赖问题后,应当记录下解决问题的过程和最终方案,这样不仅可以帮助自己在未来遇到类似问题时快速解决,也可以为团队或社区中的其他开发者提供参考。 综合上述内容,可以看出,解决ruoyi-vue-pro项目中引入AI模块时遇到的报错问题,不仅需要对依赖项进行详细的检查和配置,还需要掌握与之相关的软件开发知识和工具使用经验。通过遵循正确的开发流程和最佳实践,开发者可以有效地解决这类技术问题,并提升项目的整体质量和开发效率。
2026-01-24 23:04:16 8KB 软件开发 源码
1
AutoFTA是一款故障树建模与分析软件。采用了图形化拖拽方式建立系统故障树,支持或门、与门、非门、表决门等8种常用的逻辑门,具备最小割集分析、最小径集分析、事件发生概率分析、底事件或条件事件重要度分析、故障率分析等功能,并以表格或图形等方式显示分析结果,将故障树建模、分析运算、结果显示都集成在一个图形化集成平台上,可满足工程实际故障树分析的需求。 AutoFTA还集成了动态故障树模块,支持优先与门、顺序相关门、储备门、功能相关门等动态逻辑门,并可利用蒙特卡罗仿真顶事件的发生概率和故障率。 4.1版接入Deepseek可自动生成故障树,支持一键生成故障树分析报告,并修复了一些已知的问题。
2026-01-24 14:05:37 14.72MB AI 故障树软件
1
在《智能体、机器人与我们:AI时代的技能协作》一书中,麦肯锡深入探讨了人工智能如何改变人类工作和生活的方式。书中详细描述了人工智能技术的发展历程,特别是智能体和机器人技术的进步如何影响未来的工作环境。 书中指出,随着计算能力的增强和数据量的增长,人工智能开始展现出在识别模式、解决问题和执行复杂任务上的潜力。智能体和机器人作为AI时代的代表,不仅能够在传统制造业领域替代重复性劳动,还在医疗、金融、教育等多个行业中发挥着重要作用。例如,机器人可以协助完成手术,智能分析软件能够为金融市场提供交易建议,而教育机器人则能根据学生的需要提供个性化的教学服务。 作者强调,人工智能技术的进步带来了技能协作的新模式。人类与智能体和机器人的协作将不再是简单的替代关系,而是一种互补关系。在某些领域,智能体和机器人将承担基础工作,而人类则可以将更多精力投入到创新、设计和人际交流等需要高度创造力和情感智慧的活动中。 为了适应这种变化,书中提出了“技能升级”的概念。强调个人和组织都需要通过学习新技能、更新知识体系和思维方式来适应AI时代的变化。教育系统也需要重新设计课程内容,加强在创新思维、问题解决和人际沟通等方面的培训。 此外,麦肯锡还关注了人工智能带来的伦理和社会问题。书中提出了对于智能体和机器人的伦理使用准则,强调在设计和应用这些技术时,需要考虑到对人类社会的影响。人工智能的发展不应该以牺牲人类利益为代价,而是应该促进人类的福祉,提高生活的质量。 书中还探讨了与人工智能协作中可能产生的就业问题。作者指出,虽然某些工作可能会被自动化取代,但同时也会有新的工作机会产生。社会和政府机构需要为此做好准备,帮助劳动力进行转型,确保能够顺利过渡到新的就业市场。 《智能体、机器人与我们:AI时代的技能协作》不仅是对技术发展的概述,更是一本关于人类如何适应技术变革、利用技术推动社会进步的指南。它为读者展示了人工智能如何与人类的技能结合,共创美好未来。
2026-01-20 15:10:34 7.85MB 人工智能
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 C++,集面向对象、泛型编程与高性能于一身的全能编程语言,凭借强大的抽象能力与底层控制优势,成为系统软件、游戏开发、高性能计算的首选工具。其标准库与丰富的第三方生态,助力开发者高效构建复杂系统,从浏览器内核到人工智能框架,C++ 持续驱动着科技领域的创新突破。
2026-01-20 14:20:41 4.22MB
1
在当前的全球气候变化大背景下,山洪灾害频发且破坏力巨大,给山区居民的生命财产安全带来了严重威胁。山洪灾害具有突发性强、破坏力大的特点,现有的监测预警系统存在多种局限性,如多源数据融合不足、监测数据分散且滞后、应急响应机制不完善、复杂地形影响预测精度、传统模型精度不足等。为了解决这些问题,AI大模型驱动的山洪监测预警系统建设方案应运而生。 该项目的建设方案涉及多方面内容,从项目背景与需求分析开始,逐步深入到系统总体架构设计、关键技术实现、核心功能模块、实施路径与试点案例、效益评估与推广价值。项目背景与需求分析部分,详细描述了山洪灾害的现状与挑战,指出现有监测系统的不足,并且列举了传统监测方法的具体局限性。紧接着,方案中提出了AI技术应用的必要性,包括多模态数据处理能力、时空预测优势、自适应学习机制、智能决策支持、人机协同交互以及系统扩展性强等六大方面。 系统总体架构设计方面,方案提出了包含感知层、传输层、平台层的三层架构设计。感知层主要负责多源数据采集,包括气象水文传感器、遥感卫星数据、地质监测设备等;传输层主要实现混合通信网络的构建,包括卫星通信、5G专网、北斗短报文、LoRa传输、Mesh自组网传输技术组合等;平台层则聚焦于AI核心引擎的开发,包括多模态大模型训练、自适应预警生成、实时动态风险评估、仿真推演模块、知识图谱推理以及模型持续优化等。 关键技术实现部分,方案详细介绍了深度学习降水预测模型,以及AI模型在捕捉降雨-径流-地形非线性关系方面的优势。核心功能模块则涵盖了智能预警信息发布、智能决策支持系统、人机协同交互界面等。实施路径与试点案例部分,方案计划通过具体案例来验证系统的可行性和有效性。效益评估与推广价值部分,方案会对项目的社会价值、经济效益和推广潜力进行全面评估。 整个方案强调了AI大模型在提高山洪灾害监测预警系统准确性和时效性方面的潜力,旨在通过技术创新,更好地保障山区居民的安全,减少山洪灾害带来的损失。
2026-01-19 16:52:28 2.01MB
1
Con北京站聚焦技术落地与前沿趋势,核心方向包括: ​​AI工程化​​:端侧推理、RAG增强、多模态生成成为主流; ​​云原生深水区​​:混合云治理、湖仓一体架构、可观测性技术持续迭代; ​​安全与效能​​:大模型安全防御、研发流程标准化、平台工程价值凸显; ​​行业融合​​:物流、金融、社交等领域的技术跨界创新案例丰富。 大会为开发者提供了从理论到实践的全景视角,推动技术向生产力转化。 在当前AI+时代,图数据库的智能化探索与应用已成为技术发展的热点之一。图数据库以其独特的数据结构,能够有效地表达和管理复杂的关系和实体,为处理大规模数据和实现高效率的查询提供了新的途径。在本次技术分享中,我们从多个维度深入了解图数据库在智能化探索中的应用与实践。 图数据库在大数据时代下,为复杂关系的表达与管理提供了极为便利的手段。图数据库的基本元素是顶点和边,其中顶点表示实体或概念,边则表示实体或概念之间的关系。这种结构使得图数据库非常适合于表达复杂网络结构,如社交网络、推荐系统、知识图谱等应用场景。例如,员工信息表、好友关系表、参项关系表等都能被图数据库以直观的形式表示出来,便于实现复杂关系的查询和分析。 随着技术的不断演进,图数据库的应用场景也在不断扩展。例如,在消费金融、安全风控、数据血缘、关系网络和智能营销等领域,图数据库都发挥着重要作用。企业级图数据管理平台如TuGraph Platform不仅能够通过Restful/RPC、命令行、Java/Python SDK等多种形式接口为用户提供服务,还支持国际标准图查询语言ISO-GQL,为数据集成工具如MySQL、Oracle提供了良好的支持。 在技术的不断迭代中,图数据库的性能与功能也在不断提升。以TuGraph为例,作为一项性能世界领先、规模世界领先的企业级图数据管理平台,其提供了包括图构建、图查询、图分析、图运维等多种功能。TuGraph DB提供了在线图数据库引擎和近/离线流式图计算引擎;TuGraph Analytics则提供了实时监控引擎内核,具有分布式架构和毫秒级响应时间。同时,TuGraph Learn提供了图学习框架,支持时序图计算、图仿真、GNN训练和全图推理等高级功能。 在智能化方面,图数据库的探索也在不断深化。GraphRAG(Graph Retrieval-Augmentation-Generation)作为图数据库智能化探索的典型案例,克服了传统RAG方法中的一些缺点,通过抽取并存储文本件结构化信息(如节点、三元组、路径或子图),理解并利用文本间的结构关系。这样的改进不仅提高了信息检索的准确性,也加强了对全局信息的理解和利用。 此外,图数据库还与AI技术相结合,推动了图数据库智能化进程的发展。例如,Chat2GraphAgent(图数据智能体)能够提供图数据智能体服务,DB-GPT-Hub/Text2GQL(图语言微调)对图语言进行微调,AI DB-GPT/GraphRAGInfra(图检索增强生成)进行图检索增强生成等。这些技术的结合大大提升了图数据库的智能化水平,使其在大数据分析和人工智能领域中展现出更大的应用潜力。 安全与效能方面,图数据库也在不断强化自身能力。在数据安全方面,图数据库能够通过图谱的形式,帮助开发者和企业更好地理解和管理数据安全风险。例如,在安全风控场景中,图数据库能够通过全图风控技术,实现对安全威胁的快速识别和响应。在效能方面,图数据库通过优化图数据管理和分析流程,提高了数据处理的效率和准确性。 图数据库在智能化探索中的应用已经渗透到各个行业和领域。随着技术的不断进步,未来图数据库有望在智能化的道路上走得更远,发挥更大的作用。无论是从理论研究到技术实践,还是从单机版到分布式架构,图数据库都在不断证明其在处理复杂关系和大数据方面的强大能力。
2026-01-18 13:57:48 4.97MB 人工智能 AI
1
根据提供的文件信息,我们可以推断出以下相关知识点: 1. ChatGPT付费创作系统:这表明系统是基于GPT技术的,GPT是生成式预训练变换器的缩写,是一种广泛应用于自然语言处理的先进人工智能技术。付费创作系统意味着系统可能提供了某些高级功能或服务,这些功能或服务需要用户支付费用才能使用。 2. 版本号3.12:通常软件版本号后面的数字越大,代表软件的更新程度越高,可能意味着修复了旧版本的缺陷,增加了新功能,或者是对性能进行了优化。 3. 无授权:这表明该软件或系统可能没有得到正式的授权或许可。在商业软件领域,授权通常意味着软件开发者给予了用户使用该软件的法律许可。没有授权可能是非法复制或分发软件的情况,这种行为在大多数国家和地区都是违法的。 4. 支持Deepseek:Deepseek可能指的是一种用于搜索和发现内容的技术或服务,它可能与人工智能技术结合,用于在大量数据中寻找相关信息。支持Deepseek意味着该系统可能集成了这种搜索技术,以提供更深层次的内容检索能力。 5. 文件名称列表中的“小狐狸V3.1.2”:这很可能是该系统的某个版本的名称或标识。版本号与上述提到的3.12可能存在差异,这可能表示这是软件更新中的一个早期版本或分支版本。 我们可以得知该文件描述了一个基于GPT技术的付费创作系统,具有较新版本号3.12,可能未获得官方授权,且与Deepseek技术有关联,这表明系统在内容创作和搜索方面可能具有强大的功能。但由于缺乏官方授权,使用这类软件可能会涉及版权法律风险。
2026-01-15 20:18:46 88.64MB AI
1
Unity 行为树插件 示例Behavior Designer Integrations and samples, 第一部分, 上传文件大小有限制, 故分两部分.
2026-01-14 22:36:23 200MB AI
1