内容概要:本文介绍了Simulink这一用于动态系统建模与仿真的强大工具。首先讲解了Simulink的基本概念及其在控制系统、信号处理以及物理建模等多个领域的广泛应用。然后详述了仿真工作的六个步骤:需求分析、模型设计、模型构建、仿真设置、运行仿真及结果分析。针对仿真过程中可能遇到的一些常见难点(比如模型复杂度、数值稳定性和计算资源消耗等),提出了具体的解决方法和技术支持渠道,强调了持续学习的重要性和工具更新的价值。 适合人群:初学者及具有一定Simulink使用经验的技术爱好者、工程师。 使用场景及目标:适用于希望通过Simulink开展复杂系统仿真研究的学习者或从业者,能够帮助他们从零开始建立自己的仿真模型并进行高效的系统测试。 阅读建议:本文内容丰富全面,涉及知识点众多,在实际操作时应注意对照文本步骤反复练习,同时借助官方资源深化理解和应用。
2025-09-11 11:54:41 30KB MATLAB Simulink 仿真技术
1
三相异步电机本体模型在Matlab/Simulink平台上的构建与仿真分析。首先,文章概述了三相异步电机模型的背景和技术意义,强调了其在电机性能研究、优化设计和故障预测方面的重要性。接着,文章阐述了模型的数学原理,解释了如何通过精确的数学公式来构建电机模型,确保每个波形参数(如电压、电流)的准确性。然后,文章展示了仿真的具体效果,包括电机在不同工况下(如启动、运行、制动)的波形变化规律,使研究人员能更好地理解电机的运行原理。最后,文章讨论了该模型的实际应用价值,指出它可以用于企业或实验室的研究,帮助优化设计方案和进行故障预测。 适合人群:从事电机研究、设计和维护的技术人员,尤其是那些希望深入了解三相异步电机性能的专业人士。 使用场景及目标:①研究电机本体性能,优化设计方案;②进行故障预测,提高电机可靠性;③教学和培训,帮助学生掌握电机仿真技术。 其他说明:该模型不仅适用于学术研究,还可在工业环境中广泛应用,为企业提供技术支持。
2025-09-11 11:52:25 962KB
1
Simulink平台在电力电子技术领域的应用,涵盖了两电平和三电平逆变器、整流器、有源电力滤波器(APF)、静止无功补偿设备(SVG)、开关电源DCDC以及光伏逆变器MPPT等多种设备和技术。文中不仅讲解了各设备的基本原理和搭建方法,还深入探讨了不同控制策略的应用,如SPWM、SVPWM、PI、PR、MPC等,并分享了一些实际项目中的经验和教训,强调了仿真过程中需要注意的关键参数设置及其对系统性能的影响。 适合人群:从事电力电子技术研究和开发的技术人员,特别是熟悉Matlab/Simulink工具并希望深入了解各类电力电子设备及其控制策略的人士。 使用场景及目标:适用于高校教学、科研机构实验以及工业产品研发等场景。主要目标是帮助读者掌握Simulink环境下电力电子系统的建模、仿真和优化技能,提高实际工程项目的成功率。 阅读建议:由于涉及到大量具体的电路结构和控制算法,建议读者结合相关文献资料进行深入学习,并尝试动手构建和测试所介绍的各种模型,以便更好地理解和掌握这些复杂的技术细节。
2025-09-11 11:49:53 814KB
1
Simulink滚动数据提取模型,这是一种用于处理时间序列数据的强大工具。文章首先阐述了时间序列数据提取和分析的重要性和应用场景,接着深入探讨了Simulink滚动数据提取模型的工作原理——基于滑动窗口技术,能够实时捕获当前时刻的数据点以及前n个数据点。文中还提供了Python代码示例,展示了如何通过列表切片实现简单的滑动窗口,以便更直观地理解模型的工作机制。此外,PPT文档中包含了更为详尽的模型原理解释、图示、参数设置指导、性能分析和实际案例分析。最后,文章强调了该模型在未来技术和大数据环境下的重要性和广泛应用前景。 适合人群:从事数据分析、金融分析、物流跟踪等领域,对时间序列数据处理有需求的专业人士和技术爱好者。 使用场景及目标:适用于需要追踪数据变化和趋势的应用场景,如金融市场分析、物流跟踪等。目标是帮助用户更好地理解和分析时间序列数据,提升数据处理效率和准确性。 其他说明:Simulink滚动数据提取模型不仅限于理论讲解,还包括具体的代码实现和实际案例分析,有助于读者全面掌握该模型的应用方法。
2025-09-11 11:46:19 482KB
1
【小信号阻抗模型验证 频率扫描】 复现SCI、电机工程学报等顶刊lunwen,认准高质量模型和讲解服务 提供程序化扫频程序(simulink模型及PSCAD模型均可);全频段扫频模型,扫频精度极高;序阻抗 dq阻抗;原创成果,可提供详细讲解指导 提供FFT分析、传递函数计算、测量阻抗计算程序 程序化扫频方式相比于人工扫频快捷、方便,可程序化操作、一键运行,且更具有实用性和一般性。 [钉子]适用于mmc vsc lcc等变流器、PLL等元件、ac ac、dc dc、ac dc、dc ac等拓扑,以及直流输电、柔直、新能源(风电 光伏 单机 多机)、配电网、微电网等各类应用场景。
2025-09-10 17:45:18 472KB edge
1
基于VDA305_100标准的EPB电子驻车制动系统Simulink模型设计与实现,EPB电子驻车制动系统Simulink模型详解:基于VDA标准构建,兼容matlab多版本,涵盖多种功能仿真模拟,与Carsim联合验证,可拓展开发更多功能,EPB电子驻车制动系统Simulink模型(参考VDA305_100标准进行模型搭建) 版本:matlab2018a,可生成低版本 模型包括:有刷直流电机+执行器模型,电机参数m文件,SSM模块,PBC模块,数据处理模块,与Carsim联防进行过验证。 模型可实现功能:常规夹紧与释放,溜车再夹与自动释放,动态减速。 其他功能也可基于模型继续开发。 图片为模型及部分仿真结果,可以基于此做大创或哔设。 动画所示功能为溜车再夹与自动释放功能。 ,关键词:EPB电子驻车制动系统;Simulink模型;VDA305_100标准;有刷直流电机;执行器模型;电机参数m文件;SSM模块;PBC模块;数据处理模块;Carsim联防验证;常规夹紧与释放;溜车再夹与自动释放;动态减速;功能开发;图片;动画演示。,基于VDA305_100标准的EPB电子驻车制动系统Si
2025-09-10 17:25:57 6.85MB
1
基于PMSM的考虑电流采样延时及一延时补偿的电机控制Simulink模型(含低通滤波器与死区模块),2018b版PMSM电机控制模型:考虑电流采样延时及多模块优化的离散化仿真系统,该模型为考虑电流采样延时的电机控制simulink模型。 模型架构为PMSM的传统双闭环(PI调节器)控制(版本2018b),模型中还包括以下模块: 1)考虑电流采样延时的中断触发模块 2)转速计算的低通滤波器 3)1.5延时补偿模块 4)死区模块 该模型特色为:考虑电流采样延时、考虑了转速计算的低通滤波器、控制系统的一延时,所以该模型能够尽可能去还原实际的电机控制。 系统已经完全离散化,与实验效果非常接近。 ,会将simulink仿真模型打包发送。 ,核心关键词:电流采样延时;PMSM;双闭环控制;PI调节器;低通滤波器;1.5延时补偿;死区模块;系统离散化。,Simulink电机控制模型(含延时补偿及低通滤波)
2025-09-10 17:18:24 4.6MB ajax
1
AMESim与Simulink联合仿真平台在热泵空调系统中的应用,重点探讨了PID和模糊控制策略及其对电子膨胀阀开度的影响。文章首先阐述了联合仿真的安装与配置步骤,接着分别介绍了AMESim中热泵空调系统基本模型的构建和Simulink中控制算法的实现。随后,文章展示了如何将两者结合起来形成完整的联合仿真模型,并深入分析了PID控制器在调节电子膨胀阀开度时的作用机制,以及模糊控制在处理系统不确定性方面的优势。最后,通过对仿真结果的对比分析,得出了最优的控制策略,为提升热泵空调系统的性能提供了理论依据和技术支持。 适合人群:从事热泵空调系统设计、优化的研究人员和工程师,尤其是对联合仿真技术和控制算法感兴趣的从业者。 使用场景及目标:适用于希望深入了解AMESim与Simulink联合仿真技术在热泵空调系统中的具体应用,掌握PID和模糊控制策略的实际操作方法,以及评估不同控制策略对系统性能影响的专业人士。 其他说明:本文不仅提供了详细的建模和仿真指导,还强调了控制算法参数调整的重要性,鼓励读者通过实验验证理论成果,进一步探索先进的控制方法和技术。
2025-09-10 11:25:20 459KB
1
AMESim与Simulink联合仿真模型:解析热泵空调系统的控制策略与步骤,附PPT详解,使用AMESim2020.1与MATLAB R2016b平台,AMESim-Simulink热泵空调系统联合仿真模型 (1)包括AMESim模型和Simulink模型(AMESim模型可转成.c代码) (2)包含压缩机转速控制策略和电子膨胀阀开度控制策略,压缩机转速分别采用PID和模糊控制,电子膨胀阀开度采用PID控制 (3)含PPT联合仿真步骤讲解 (4)AMESim2020.1,MATLAB R2016b ,核心关键词:AMESim模型; Simulink模型; 联合仿真模型; 压缩机转速控制; 模糊控制; PID控制; 电子膨胀阀开度控制; PPT联合仿真步骤讲解; AMESim2020.1; MATLAB R2016b。,"AMESim与Simulink联合仿真模型:热泵空调系统的智能控制策略研究"
2025-09-10 11:24:13 306KB edge
1
内容概要:本文介绍了AMESim与Simulink联合仿真模型在热泵空调系统中的应用,涵盖了模型转换、控制策略及具体实施步骤。文中详细描述了压缩机转速控制(PID和模糊控制)以及电子膨胀阀开度控制(PID控制),并通过PPT形式讲解了联合仿真的具体步骤。通过这种方式,可以更精准地模拟热泵空调系统的运行状态和性能,提升系统效率并优化控制策略。 适合人群:从事热泵空调系统研究与开发的技术人员、高校相关专业师生。 使用场景及目标:适用于需要对热泵空调系统进行深入研究和优化的项目,旨在提高系统的性能和稳定性,掌握先进的控制策略和技术手段。 其他说明:文中使用的软件版本为AMESim2020.1和MATLAB R2016b,提供了详细的PPT讲解,便于理解和实操。
2025-09-10 11:19:54 579KB
1