直接下载即可
2025-11-17 21:00:52 148.49MB java windows
1
《深入理解Java虚拟机:(第3版)1》是一本专为Java开发人员、系统调优师和系统架构师深度解析Java虚拟机运作原理的著作。作者在第三版中更新了Java技术的发展历程,并对第二版的内容进行了全面修订,以适应Java近年来的演进。 Java虚拟机(JVM)是Java技术体系的核心组成部分,它为Java程序提供了跨平台的运行环境,屏蔽了底层硬件和操作系统的差异。这一特性使得Java开发者能够专注于业务逻辑,而不必过多考虑硬件兼容性问题。然而,随着Java应用在互联网、能源、金融、通信等领域中的广泛应用,对程序性能、稳定性和扩展性的要求越来越高。此时,了解JVM的内部工作机制变得至关重要。 在高并发和性能优化的场景下,Java程序的表现往往受到JVM的影响。商用JVM提供了丰富的优化参数和调节工具,但若开发者不了解这些特性的原理,就难以编写出能充分利用JVM优化的代码。因此,对于中、高级开发者,系统调优师和架构师来说,掌握JVM的运作原理是提升工作效率和系统性能的关键。 本书共分为五个部分:走近Java、自动内存管理、虚拟机执行子系统、程序编译与代码优化、高效并发。每一部分都独立且深入,读者可以根据兴趣选择阅读顺序。尽管作者尽量用通俗易懂的语言来解释复杂的概念,但仍然需要读者具备一定的Java基础知识,特别是对Java类库API、语法和常用框架的理解。 书中主要以OracleJDK/OpenJDK中的HotSpot虚拟机为例,但讲述的内容普遍适用于各种Java虚拟机。书中不仅涵盖了垃圾收集、内存模型、类加载机制、JIT编译器等内容,还深入探讨了线程并发和性能调优的实践策略。通过这些知识,读者可以更好地理解和优化Java程序的运行效率。 《深入理解Java虚拟机:(第3版)1》是一本面向专业开发者的实用指南,旨在帮助读者提升对Java虚拟机的理解,从而在实际工作中编写出更加高效、稳定的代码。无论是进行性能调优,还是构建高并发应用,这本书都将是不可或缺的参考资料。
2025-11-17 14:04:05 20.91MB
1
虚拟机学习笔记 Java 虚拟机(JVM)是 Java 语言的 runtime 环境,负责加载、验证、执行 Java 字节码。以下是 JVM 相关知识点的总结。 1. 运行时数据区域 JVM 的运行时数据区域主要包括: * 堆(Heap):用于存储对象、数组等内存,GC 管理和回收。 * 方法区(Method Area):存储被 JVM 加载的类信息、运行时常量池、JIT 编译后的 Code Cache 等信息。 * 直接内存(Direct Memory):用于 NIO 的缓冲区分配,避免在系统内存与 JVM 堆内存之间拷贝的开销。 * 线程私有内存(Thread Private Memory):包括程序计数器、JVM 栈、本地方法栈等。 2. 对象的内存布局 对象的内存布局主要包括: * 对象头(Object Header):记录对象的运行时信息,如 hashCode、GC 分代年龄、锁状态等。 * Class Pointer:指向所属的类信息数组长度(可选,对象为数组)。 * 对象数据(Object Data):各种字段的值,按宽度分类紧邻存储。 * 对齐填充(Alignment Padding):内存对齐为 1 个字长整数倍,减少 CPU 总线周期。 3. 内存溢出 内存溢出(OutOfMemoryError)是指 JVM 无法分配对象所需内存时抛出的异常。解决方法包括: * 调整堆大小:使用 -Xms 和 -Xmx 选项调整堆的初始大小和最大大小。 * 找出无法被回收的大对象:使用 Eclipse MAT 分析堆转储文件,定位无法被回收的大对象,找出其 GC Root 引用路径。 * 优化代码:使用 null 显式赋值、虚引用等方式及时回收大对象,减少大对象的生命周期,检查数据结构使用是否合理等。 4. JVM 对象创建 JVM 对象创建过程包括: * 类加载:类加载完毕后,其对象所需内存大小是确定的。 * 对象分配:堆内存由多线程共享,使用 CAS 乐观锁争夺内存,故线程创建时在堆内存为其分配私有的分配缓冲区(TLAB)。 * 零值初始化:对象的堆内存、设置对象头信息、执行构造函数。 5. JVM 堆内存分配 JVM 堆内存分配流程包括: * TLAB 剩余空间不足以分配新对象,但又小于最大浪费空间阈值时,才会加锁创建新的 TLAB。 * 对象头信息:记录对象的运行时信息,如 hashCode、GC 分代年龄、锁状态等。 JVM 是 Java 语言的 runtime 环境,负责加载、验证、执行 Java 字节码。 JVM 的运行时数据区域包括堆、方法区、直接内存、线程私有内存等。对象的内存布局包括对象头、Class Pointer、对象数据、对齐填充等。内存溢出可以通过调整堆大小、找出无法被回收的大对象、优化代码等方式解决。
2025-11-17 14:02:37 3.11MB
1
垃圾回收重点区域:堆和方法区部分区域。   引用计数算法:   1,引用计数算法:   给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值加1;当引用失效时,计数器值减1;任何时刻计数器都为0的对象是不再被使用的,垃圾收集器将回收该对象使用的内存。   实现简单,判定效率很高。但是很难解决对象之间循环引用的问题。   2,可达性分析算法:   java所使用的垃圾回收算法。   基本思想:通过一系列的名为“GC Root”的对象作为起点,从这些节点向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Root没有任何引用链相连时,则该 《深入理解Java虚拟机》是一本深度探讨Java内存管理和垃圾回收机制的专业书籍。在Java编程中,理解虚拟机的工作原理对于优化程序性能至关重要。这里主要介绍的是垃圾回收的重点区域、引用计数算法与可达性分析算法,以及几种常见的垃圾收集算法。 垃圾回收主要关注的区域是堆和方法区。堆是Java对象的主要存储区域,所有的实例对象都在堆中分配内存。方法区则存储类的信息,包括类的静态变量和常量。这两个区域是垃圾回收的重点,因为它们占据了大部分的内存空间。 引用计数算法是一种简单的垃圾回收策略,每个对象都有一个引用计数器,每当有新的引用指向它时,计数器加1;当引用失效时,计数器减1。计数器为0的对象被认为是无用的,可以被回收。然而,这种方法无法处理循环引用的问题,比如两个对象互相引用但无其他对象引用它们,这时两者都无法被正确回收。 可达性分析算法是Java采用的主流垃圾回收策略。它从一组称为"GC Roots"的对象出发,通过引用链进行遍历,如果一个对象不能从GC Roots直接或间接引用,那么这个对象就是不可达的,可以被视为垃圾。在Java中,GC Roots通常包括虚拟机栈中的局部变量、方法区的静态属性引用、常量引用以及本地方法栈中JNI引用的对象。 接着,我们来看看几种垃圾收集算法: 1. 标记-清除算法:首先标记出所有需要回收的对象,然后统一清除。这种算法效率低,且会产生内存碎片。 2. 复制算法:将内存分为两部分,每次只使用其中一部分,垃圾回收时只需复制存活对象到另一部分,然后清空原部分。这种方法避免了碎片,但牺牲了一半的可用内存。 3. 标记-整理算法:与标记-清除类似,但标记后不是立即清除,而是让存活对象向一端移动,然后直接清理边界以外的内存,解决了碎片问题。 4. 分代收集算法:根据对象生命周期的不同,将内存分为新生代和老年代,新生代通常采用复制算法,老年代可能使用标记-清除或标记-整理算法。这样可以根据不同区域的特点选择最适合的回收策略。 垃圾收集器和内存分配策略也是优化性能的关键。Java虚拟机有多种垃圾收集器,如串行收集器、并行收集器、并发收集器等,每种收集器都有其特点和适用场景。内存分配策略包括对象优先在Eden区分配、大对象直接进入老年代、长期存活的对象晋升老年代、动态对象年龄判断以及空间分配担保等,这些策略旨在平衡内存使用效率和垃圾回收效率。 理解和掌握这些知识点对于编写高效的Java代码、避免内存泄漏、优化系统性能具有重要意义。开发者需要根据应用的需求和性能指标,合理选择和配置垃圾收集器,以及制定有效的内存分配策略。
2025-11-17 13:59:55 121KB java 虚拟机
1
Oracle 11g R2 11.2.0.4,p13390677,适用于Windows 32位,安装包,从1到6,云盘资源
2025-11-17 12:22:05 61B oracle 112040 p13390677 Windows
1
OCR识别服务桌面版 paddleocr桌面版 使用最新的v3模型 转换的onnx模型封装 OCR HTTP服务/win32程序/易语言编写 目前已知运行速度最快、支持最广,完全开源免费并支持离线快速部署的多平台多语言OCR。 提供信创平台多架构,包括Arm/X86/mips(龙芯)/RISC-V等信创CPU支持,同时兼容ONNXRuntime/OpenVINO/NCNN。 百度paddlepaddle工程化不是太好,为了方便大家在各种端上进行ocr推理,我们将它转换为onnx格式,使用Python/C++/Java/Swift/C# 将它移植到各个平台。 轻快好省并智能。基于深度学习技术的OCR技术,主打人工智能优势及小模型,以速度为使命,效果为主导。 API部署改为FastAPI库支持 将API模式与Web解耦合,可通过pip install rapidocr_web[api]来选择性安装 OCR模型版权归百度所有,其它工程代码版权归本仓库所有者所有。 本软件采用Apache 授权方式,欢迎大家贡献代码,提交issue 甚至PR。 信创级开源OCR - 为世界内容安全贡献
2025-11-17 10:30:05 90.25MB paddlepaddle paddlepaddle 网络协议 windows
1
PX4.Windows.Cygwin.Toolchain 是一款在Windows操作系统上提供类Unix环境和工具的强大软件。其核心在于提供了一个在Windows平台上运行类Unix应用程序、Shell脚本和命令行工具的解决方案。 首先,Cygwin是这款软件的基础,它是一个开源的免费软件,旨在为用户提供与Unix相似的开发环境。通过Cygwin,Windows用户可以访问和使用大量的GNU和其他开源工具,这些工具在Unix系统中非常流行。因此,PX4.Windows.Cygwin.Toolchain不仅为用户提供了熟悉和高效的开发环境,还极大地拓宽了Windows平台上可用的工具集。 这款软件的核心部分是Cygwin1.dll,它提供了这些程序所期望的POSIX系统调用和环境。这意味着,通过PX4.Windows.Cygwin.Toolchain,Windows用户可以享受到与Unix系统相似的系统调用和环境,从而更加高效地执行各种开发任务。 PX4.Windows.Cygwin.Toolchain支持多种Windows操作系统版本
2025-11-16 21:43:43 495.8MB windows
1
HP B120i是一款由惠普公司设计的集成SATA控制器,主要应用于服务器和工作站,为系统提供RAID(冗余磁盘阵列)功能。这款阵列卡旨在提高数据存储的性能和可靠性,特别是在运行Windows Server 2019这样的操作系统时。在Windows 2019环境下,正确安装和配置B120i的驱动程序至关重要,因为它直接影响到系统的稳定性和硬盘的读写速度。 我们来详细了解下HP B120i的主要特性: 1. **硬件RAID支持**:B120i支持多种RAID级别,包括RAID 0(条带化),RAID 1(镜像),以及RAID 10(镜像条带化)。这些RAID模式可以实现数据的高速访问、容错或两者兼备。 2. **性能优化**:B120i阵列卡通过硬件加速来提升SATA硬盘的I/O性能,尤其在RAID 0模式下,可显著提高读写速度。 3. **系统兼容性**:作为一款广泛使用的阵列卡,B120i与多个版本的Windows Server操作系统兼容,包括Windows Server 2019,确保了用户在升级系统时的数据连续性。 4. **智能管理**:惠普提供了HP Smart Array管理工具,允许管理员监控阵列卡的状态,进行配置更改,以及执行故障排除。 安装HP B120i驱动程序的步骤如下: 1. **下载驱动**:访问HP官方网站,找到对应B120i的最新驱动程序,通常会根据操作系统版本分类。在这个案例中,我们需要的是适用于Windows Server 2019的驱动。 2. **解压文件**:将下载的压缩包“B120i”解压到本地文件夹,通常包含驱动安装程序和其他相关文件。 3. **安装驱动**:以管理员权限运行安装程序,按照向导提示进行操作,期间可能需要重启计算机以完成安装。 4. **验证安装**:安装完成后,可以通过设备管理器检查B120i驱动是否正确安装,其状态应显示为“已启用”或“正常”。 5. **配置RAID**:使用HP Smart Storage Administrator或者iLO(整合 Lights-Out)进行RAID配置,根据业务需求选择合适的RAID级别。 6. **系统更新**:保持驱动程序的最新状态,定期检查并安装HP发布的驱动更新,以确保最佳性能和兼容性。 HP B120i阵列卡驱动对于Windows Server 2019环境下的高效数据存储和保护起着关键作用。正确安装和管理驱动不仅可以提升系统的整体性能,还能确保数据安全,减少因硬件故障导致的数据丢失风险。
2025-11-16 17:47:55 2.04MB windows B120i
1
UV uv包管理器是一种专为Windows操作系统设计的应用程序管理工具,它允许用户通过命令行界面来安装、更新、管理和卸载各种应用程序。该工具以“uv.exe”和“uvx.exe”两个可执行文件的形式存在,这两个文件是UV包管理器的核心组件,用于执行不同的命令和操作。 用户在使用UV包管理器之前,需要下载对应的zip包,并将其解压缩到指定的文件夹中。解压缩后的文件夹内包含了uv.exe和uvx.exe这两个可执行程序。为了方便在任何目录下使用UV包管理器,用户还需要配置环境变量,这样就可以通过命令提示符直接调用uv.exe或uvx.exe来执行相关的包管理任务。 在实际使用过程中,用户可以通过命令行向uv.exe发出指令,比如安装新软件、搜索可用的软件包、更新已安装的程序到最新版本,或者卸载不再需要的软件。而uvx.exe则可能是一个扩展功能的程序,用于执行更高级或者特定的任务,具体功能取决于UV包管理器的设计和用户的需求。 UV包管理器的使用简化了在Windows系统中管理应用程序的过程,与Linux系统中的包管理器(如apt-get、yum等)具有相似的功能,使得用户可以更加方便地进行应用程序的维护工作。此外,由于UV包管理器本身也是一个应用程序,它也可能需要升级来修复已知的bug、增加新功能或改善用户体验。 对于开发者来说,UV包管理器能够提供一个统一的界面来管理软件依赖,这在开发和维护大型项目时尤为重要。同时,包管理器的存在还能够确保开发者在不同环境中工作时,能够获得一致的软件运行环境,从而避免了因环境差异导致的问题。 此外,UV包管理器也可能包含了各种插件或扩展,以支持更多的功能,比如版本控制、依赖检查、打包和分发等。这些功能的加入,使得UV包管理器不仅仅是一个简单的应用程序安装工具,更是一个全面的软件开发和部署解决方案。 在Windows生态系统中,虽然有许多其他的软件管理工具,但UV包管理器凭借其命令行界面的简洁性和强大的功能,成为了许多开发者和系统管理员的首选工具。它以其高效、稳定和易于使用的特性,帮助用户更好地管理和优化Windows环境下的软件生态。 UV包管理器之所以能够成为一个受欢迎的工具,还因为它的社区支持和文档资源。用户可以访问官方文档来获取详细的操作指南和常见问题解答,同时还可以参与到社区中,与其他用户交流经验和解决方案,共同推动UV包管理器的发展和完善。 UV包管理器windows版为Windows用户提供了一个高效、便捷的软件管理解决方案,它通过命令行工具简化了软件的安装、更新和维护过程。无论对于个人用户还是开发者,UV包管理器都是一个值得推荐的工具,它的普及和使用有助于提升Windows平台上的软件管理效率和开发体验。
2025-11-16 14:24:31 16.95MB
1
由于网上的规则不在适合获取钉钉历史版本,于是我手工上传了几个
2025-11-16 12:15:42 405.12MB
1