石榴病害检测数据集VOC+YOLO格式2356张4类别.docx
2025-06-04 09:36:44 2.43MB 数据集
1
从kaggle上的RLE格式转过来的,一共有6666张图片和标签,classes文件已经在包里了,直接用labelimg打开即可,种类是1234,因为源文件的RLE标签里的分类就是这几个数字,没有声明数字对应的缺陷种类是什么 今年年初搞的,不过这个数据集想获得比较好的训练结果似乎很难
2025-05-22 20:53:52 616.18MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144168985 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1794 标注数量(xml文件个数):1794 标注数量(txt文件个数):1794 标注类别数:12 标注类别名称:["Anticarsia_gemmatalis","Coccinellidae","Diabrotica_speciosa","Edessa_meditabunda","Euschistus_heros_adulto","Euschistus_heros_ninfa","Gastropoda","Lagria_villosa","Nezara_viridula_adulto","Nezara_viridula_ninfa","Rhammatocerus_schistocercoides","Spodoptera_al
2025-05-22 11:25:19 407B 数据集
1
[数据集][目标检测]抽烟检测数据集VOC+YOLO格式22559张2类别.docx
2025-05-16 10:57:40 3.96MB 数据集
1
yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格式电杆数据集yolo格
2025-05-12 22:46:02 130B 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144149641 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4195 标注数量(xml文件个数):4195 标注数量(txt文件个数):4195 标注类别数:1 标注类别名称:["damaged"] 每个类别标注的框数: damaged 框数 = 8357 总框数:8357 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-05-07 14:32:56 407B 数据集
1
VOC2007数据集是计算机视觉领域中一个广泛使用的图像识别和对象检测的数据集,全称为PASCAL Visual Object Classes Challenge 2007。这个数据集由英国剑桥大学计算机实验室创建,旨在推动多类物体检测算法的研究。VOC2007包含了20个不同的类别,如人、自行车、狗、飞机等,涵盖了日常生活中的多种常见对象。 YOLO(You Only Look Once)是一种实时目标检测系统,以其高效和准确的性能在计算机视觉领域广受欢迎。YOLOv1在2016年首次提出,随后出现了YOLOv2、YOLOv3、YOLOv4和YOLOv5等多个版本,每个新版本都在速度和精度上有所改进。YOLO的核心思想是将图像分割为网格,并预测每个网格内的物体类别和边界框。 本压缩包提供的VOC2007数据集已经转换为YOLO格式,这意味着它已经被整理好,可以直接用于训练YOLO模型,无需额外的数据预处理步骤。数据集被划分为三个部分:训练集(2501个样本)、验证集(2510个样本)和测试集(4952个样本)。这种划分有助于模型的训练和验证,确保模型的泛化能力。 "labels"文件夹中包含了与图像对应的标注文件,这些文件通常以.txt格式存储,每行代表图像中一个对象的信息,包括该对象在图像中的边界框坐标(用相对比例表示)以及对应的类别标签。例如,“0.1 0.2 0.5 0.6 person”表示图像中有一个“person”类别的对象,其左上角坐标为(0.1, 0.2),右下角坐标为(0.5, 0.6)。 "images"文件夹则包含实际的图像文件,这些图像用于训练和评估YOLO模型。每个图像文件名通常与其对应的标注文件名相同,这样可以方便地将图像和其标注信息对应起来。 使用此数据集训练YOLO模型时,首先需要配置YOLO的训练脚本,指定训练集、验证集和标签文件的位置。然后,选择合适的超参数,比如学习率、批大小、迭代次数等。训练过程中,可以定期在验证集上进行验证,观察模型性能的提升。训练完成后,使用测试集评估模型的最终性能,通常使用指标如平均精度(mAP)来衡量。 对于YOLOv5,可以利用其提供的工具包进行数据预处理、训练和评估。例如,使用`yaml`配置文件定义数据路径和训练参数,运行`train.py`进行训练,使用`evaluate.py`进行测试。此外,YOLOv5还支持数据增强,如随机翻转、裁剪和色彩扰动,以提高模型的泛化能力。 这个VOC2007数据集的YOLO格式版本是一个非常有价值的资源,可以帮助研究人员和开发者快速进行物体检测模型的训练和优化,特别是对于那些希望使用YOLO系列模型的用户。通过利用这个数据集,我们可以深入研究和比较不同YOLO版本的性能,或者开发新的目标检测技术。
2025-05-01 18:56:57 338.2MB 数据集 VOC2007 yolo yolov5
1
样本图:blog.csdn.net/2403_88102872/article/details/144276115 文件放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1005 标注数量(xml文件个数):1005 标注数量(txt文件个数):1005 标注类别数:4 标注类别名称:["blossom","green","ripe","young"] 每个类别标注的框数: blossom 框数 = 539 green 框数 = 4045 ripe 框数 = 7701 young 框数 = 4581 总框数:16866 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-05-01 00:31:40 407B 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144195908 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):419 标注数量(xml文件个数):419 标注数量(txt文件个数):419 标注类别数:10 标注类别名称:["bypass_diode","bypassed_substrings","defect_string","hot_module","hotspot","open_circuit-","overheated_connection","pid","reverse_polarity","suspected_pid"]
2025-04-26 01:34:46 407B 数据集
1
海龟数据集是一个专门用于计算机视觉任务,特别是目标检测的应用数据集。在这个VOC(Visual Object Classes)格式和YOLO(You Only Look Once)格式的版本中,包含了29张图像,所有图像都标注了同一类别的对象——海龟。这个数据集对于训练和测试目标检测算法,尤其是那些基于YOLO架构的算法,是非常有价值的。 让我们了解一下VOC格式。VOC数据集是由University of Oxford的研究团队创建的,广泛用于图像识别、物体检测和分割等任务。VOC数据集的标准结构包含JPEG图像文件、XML注释文件以及一些额外的元数据。XML文件提供了每张图片中对象的边界框坐标、类别信息以及更多细节。这种结构化的数据格式使得它易于处理和分析。 接着,我们来看YOLO格式。YOLO是一种实时目标检测系统,由Joseph Redmon等人在2016年提出。YOLO的目标检测模型直接在图像上预测边界框和类别概率,通过将图像分成网格并让每个网格负责预测几个可能的边界框。YOLO格式的数据通常包括一个或多个CSV文件,列出每个图像的边界框坐标和类别ID,以及对应的图像文件名。这种简洁的表示方法非常适合快速训练和评估YOLO模型。 在海龟数据集中,由于只有29张图像,它更适合用作小型项目的训练集,或者作为大型数据集的补充。对于初学者来说,这是一个很好的起点,因为它规模适中,可以快速地理解目标检测的基本概念并进行实践。同时,由于只有一种类别,这简化了模型训练和评估的过程。 在训练过程中,你可以使用开源工具如PASCAL VOC工具箱来处理VOC格式的注释,或者使用专门针对YOLO格式的脚本进行数据预处理。模型训练通常涉及调整超参数、选择合适的预训练模型,并使用交叉验证来防止过拟合。完成训练后,你可以使用标准的评估指标,如平均精度(mAP)来衡量模型的性能。 "海龟数据集VOC格式+yolo格式29张1类别.zip"为学习和实验目标检测提供了基础素材。无论是对计算机视觉新手还是希望尝试不同目标检测模型的开发者,这个小而精的数据集都是一个很好的起点。通过这个数据集,你可以深入理解VOC和YOLO数据格式,掌握目标检测的基本步骤,为进一步探索复杂场景的目标检测打下坚实的基础。
2025-04-17 01:42:09 8.69MB 数据集
1