"OpenCV与Qt框架下,智能卡尺工具的设计与实现:带X、Y及角度纠偏的图像处理与形状匹配算法研究",基于OpenCV与QT的卡尺工具:工具跟随、精准定位、自动纠偏及图像处理全套源码与学习资料,基于opencv与qt开发的卡尺工具,卡尺工具,具有工具跟随功能,找线找圆工具可以根据形状匹配位置定位实现带X、Y以及角度偏差的自动纠偏,图像采集,图像处理,卡尺工具,找线,找圆,颜色检测,模板匹配,形状匹配,海康工业相机采集+基于形状的模板匹配界面,提前说明,形状匹配算法和找线找圆算法封装成dll直接调用的,其他都是源码,是不错的学习资料,程序资料 ,基于opencv与qt开发; 卡尺工具; 工具跟随功能; 形状匹配; 定位; 自动纠偏; 图像采集; 图像处理; 找线; 找圆; 颜色检测; 模板匹配; 海康工业相机采集; 形状匹配算法封装dll; 程序资料,OpenCV与Qt卡尺工具:图像处理与形状匹配的智能解决方案
2025-04-08 11:45:46 230KB
1
内容概要:本文详细介绍了如何利用MATLAB构建一个基于颜色和纹理特征的图像检索系统。首先,通过HSV空间的颜色直方图提取颜色特征,确保特征更符合人类视觉感知。接着,结合灰度共生矩阵(GLCM)和局部二值模式(LBP)提取纹理特征,增强对图像纹理的识别能力。为了提高检索精度,引入了加权融合机制,允许用户通过滑动条动态调整颜色和纹理特征的权重。此外,文中还讨论了特征向量的归一化处理以及距离计算方法的选择,强调了这些步骤对检索性能的重要影响。通过对655张图像库的多次测试,展示了系统的高效性和灵活性,并提出了进一步优化的方向。 适合人群:从事数字图像处理的研究人员和技术爱好者,尤其是对MATLAB有一定基础的开发者。 使用场景及目标:适用于需要快速精准地从大量图像中查找特定图像的应用场景,如图像分类、相似图像搜索等。主要目标是通过颜色和纹理特征的综合应用,提高图像检索的准确性和用户体验。 其他说明:文中提供了详细的代码片段和实验数据,便于读者理解和复现。同时指出了一些常见的陷阱和优化建议,有助于读者避开开发过程中可能出现的问题。
2025-04-08 10:54:17 110KB 图像处理 MATLAB 特征提取 颜色特征
1
无人机四旋翼PID控制和自适应滑模控制轨迹跟踪仿真研究:三维图像与matlab Simulink模拟分析,无人机仿真 无人机四旋翼uav轨迹跟踪PID控制matlab,|||simulink仿真,包括位置三维图像,三个姿态角度图像,位置图像,以及参考位置实际位置对比图像。 四旋翼无人机轨迹跟踪自适应滑模控制,matlab仿真。 ,核心关键词:无人机仿真; 四旋翼UAV; 轨迹跟踪; PID控制; Matlab; Simulink仿真; 位置三维图像; 姿态角度图像; 位置图像; 参考位置实际位置对比图像; 自适应滑模控制。,"无人机四旋翼轨迹跟踪的PID与自适应滑模控制Matlab/Simulink仿真研究"
2025-04-06 21:29:45 231KB 哈希算法
1
该资源包含基于U-Net模型的医学图像分割任务完整代码及不同注意力机制(如SENet、Spatial Attention、CBAM)下的训练结果。资源实现了数据预处理、模型定义、训练与验证循环,以及结果评估与可视化,提供了详细的实验记录与性能对比(如Accuracy、Dice系数、IoU等关键指标)。代码结构清晰,易于复现和扩展,适用于医学图像分割研究和U-Net模型改进的开发者与研究者参考。 在人工智能领域,图像分割技术一直是一个备受关注的研究方向,特别是在医学图像分析中,精确的图像分割对于疾病的诊断和治疗具有重要的意义。ISIC(International Skin Imaging Collaboration)项目提供了大量的皮肤病医学图像,这对于研究和开发图像分割模型提供了宝贵的资源。UNet作为卷积神经网络(CNN)的一种变体,在医学图像分割领域表现出了优异的性能,尤其是它的结构特别适合小样本学习,并且能够捕捉图像的上下文信息。 本研究利用UNet模型对ISIC提供的皮肤病医学图像进行了分割,并在此基础上加入了注意力机制,包括SENet(Squeeze-and-Excitation Networks)、CBAM(Convolutional Block Attention Module)等,以进一步提升模型性能。注意力机制在深度学习中的作用是模拟人类视觉注意力,通过赋予网络模型关注图像中重要特征的能力,从而提高任务的准确性。SENet通过调整各个特征通道的重要性来增强网络的表现力,而CBAM则更加细致地关注到特征的二维空间分布,为网络提供了更加丰富和准确的注意力。 研究结果表明,在引入了这些注意力机制后,模型的分割准确率达到了96%,这显著高于没有使用注意力机制的原始UNet模型。这样的成果对于医学图像的精确分割具有重要的意义,能够帮助医生更准确地识别和分析病灶区域,从而为疾病的诊断和治疗提供科学依据。 本资源提供了一套完整的医学图像分割任务代码,涵盖了数据预处理、模型定义、训练与验证循环、结果评估和可视化等关键步骤。代码结构设计清晰,方便开发者复现和对模型进行扩展,不仅对医学图像分割的研究人员有帮助,同时也对那些想要深入学习图像分割的AI爱好者和学生有着极大的教育价值。 通过对比不同注意力机制下的训练结果,研究者可以更深入地理解各种注意力机制对模型性能的具体影响。实验记录详细记录了各个模型的关键性能指标,如准确率(Accuracy)、Dice系数、交并比(IoU)等,这些都是评估分割模型性能的常用指标。通过这些指标,研究者不仅能够评估模型对图像分割任务的整体性能,还能够从不同维度了解模型在各个方面的表现,从而为进一步的模型优化提供指导。 这份资源对于那些希望通过实践来学习和深入理解医学图像分割以及U-Net模型改进的研究人员和开发人员来说,是一份宝贵的资料。它不仅包含了实现高精度医学图像分割模型的代码,还提供了如何通过引入先进的注意力机制来提升模型性能的实践经验。
2025-04-06 19:24:08 440.34MB UNet 注意力机制
1
Wienert S,Heim D,Kotani M,Lindequist B,Stenzinger A,Ishii M,Hufnagl P,Beil M,Dietel M,Denkert C,Klauschen F. CognitionMaster:基于对象的图像分析框架。 诊断病理学2013,8:34
2025-04-05 18:48:52 937KB 开源软件
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像修复: 维纳滤波、最小二乘、模糊图像复原、中值、均值图像恢复、全变分TV+curvelet变换图像修复、自适应空间滤波图像修复
2025-04-05 13:29:30 14KB matlab
1
**图像分割:Pytorch实现UNet++进行医学细胞分割** 图像分割是计算机视觉领域中的一个核心任务,它涉及将图像划分为多个具有不同语义意义的区域或对象。在医学成像中,图像分割尤其重要,因为它可以帮助医生识别和分析病灶、细胞结构等。PyTorch是一个流行的深度学习框架,其强大的灵活性和易用性使其成为实现复杂网络结构如UNet++的理想选择。 **UNet++简介** UNet++是一种改进的UNet架构,由Zhou等人于2018年提出,旨在解决UNet在处理重叠边界区域时的局限性。UNet++通过引入一系列密集的子网络连接,提高了特征融合的效率,从而在像素级别的预测上表现出更优的性能。这种设计特别适合对细胞、组织等微小结构的高精度分割。 **PyTorch实现** 在PyTorch中实现UNet++通常包括以下几个关键步骤: 1. **数据集处理**(dataset.py):你需要准备训练和验证数据集,这通常包括预处理图像和相应的标注图。`dataset.py`中会定义数据加载器,以批处理的方式提供图像和标签。 2. **模型结构**(archs.py):UNet++的结构由编码器(通常是预训练的卷积神经网络如ResNet)和解码器组成,它们之间通过跳跃连接和密集子网络连接。`archs.py`文件将定义UNet++的网络结构。 3. **训练过程**(train.py):在`train.py`中,你会设置训练参数,如学习率、优化器、损失函数(例如Dice损失或交叉熵损失)、训练迭代次数等,并实现训练循环。 4. **验证与评估**(val.py):验证脚本`val.py`用于在验证集上评估模型性能,通常会计算一些度量标准,如Dice系数或IoU(交并比),以衡量分割结果的质量。 5. **辅助函数**(losses.py, metrics.py, utils.py):这些文件包含损失函数实现、评估指标和一些通用工具函数,如保存模型、可视化结果等。 6. **命令行参数**(cmd.txt):`cmd.txt`可能包含运行训练或验证脚本时的命令行参数,比如指定设备(GPU/CPU)、数据路径等。 7. **开发环境配置**(.gitignore, .vscode):`.gitignore`文件定义了在版本控制中忽略的文件类型,`.vscode`可能是Visual Studio Code的配置文件,用于设置代码编辑器的偏好。 在实际应用中,你还需要考虑以下几点: - **数据增强**:为了增加模型的泛化能力,通常会在训练过程中使用数据增强技术,如旋转、翻转、缩放等。 - **模型优化**:根据任务需求调整网络结构,例如添加更多层、调整卷积核大小,或者采用不同的损失函数来优化性能。 - **模型部署**:训练完成后,将模型部署到实际应用中,可能需要将其转换为更轻量级的形式,如ONNX或TensorRT,以适应硬件限制。 通过理解并实现这个项目,你可以深入掌握基于PyTorch的深度学习图像分割技术,尤其是UNet++在医学细胞分割领域的应用。同时,这也会涉及到数据处理、模型构建、训练策略和性能评估等多个方面,对提升你的深度学习技能大有裨益。
2025-04-05 10:29:58 40.38MB pytorch unet 图像分割
1
含CubeMX所构建STM32F4工程(可直接编译运行)、网络训练模型和Cifar-10数据集。
2025-04-04 15:58:21 257.6MB stm32 神经网络 CubeMX keras
1
DICOM文件打开软件,DICOM图像文件信息解析与图像显示。
2025-04-03 17:15:33 11.76MB DICOM 医学图像浏览 DICOM解析
1
在本文中,我们将深入探讨如何在Microsoft Foundation Class (MFC) 库中使用PNG图像来创建具有透明效果的按钮,并且会提供一个基于VS2015的完整工程示例。MFC是Microsoft为Windows应用程序开发提供的C++类库,它简化了Windows API的使用,使得开发者能够更方便地构建桌面应用程序。 PNG(Portable Network Graphics)是一种支持透明度的位图格式,通过使用Alpha通道,可以实现半透明和完全透明的效果。在MFC应用中,我们通常使用CBitmap和CDC类来处理图像,但它们并不直接支持PNG的透明特性。因此,我们需要引入额外的库,如libpng或GDI+,来解析PNG文件并利用其透明度信息。 1. **libpng库集成**:在MFC项目中,首先需要链接libpng库。这通常涉及到下载libpng源码,编译为动态或静态库,然后将库文件添加到项目的链接器设置中。同时,还需将对应的头文件路径加入到项目配置中。 2. **解析PNG图像**:使用libpng库提供的API,例如`png_create_read_struct()`和`png_init_io()`,来初始化读取结构并设置输入流。接着调用`png_read_image()`和`png_read_end()`读取图像数据。 3. **创建设备上下文对象**:在MFC中,CDC类代表设备上下文,用于图形绘制。创建一个CDC实例,并使用`CreateCompatibleDC()`创建一个兼容的设备上下文,以便绘制到内存位图。 4. **加载PNG到内存位图**:利用libpng解析出的像素数据,创建一个CBitmap对象,并将其绑定到兼容设备上下文。这个过程可能需要一些转换,因为MFC的CBitmap不直接支持Alpha通道,所以可能需要手动处理Alpha值。 5. **处理按钮状态**:在MFC中,按钮的状态包括普通、鼠标悬停(高亮)和禁用(灰度)。对于高亮状态,可以创建一个CBrush对象,使用`SetBkColor()`设置为按钮的高亮颜色,然后使用`CreateHatchBrush()`创建一个刷子,绘制高亮效果。对于灰度效果,可以使用算法将RGB颜色转换为灰度。 6. **重绘按钮**:在OnPaint()函数中,创建一个PAINTSTRUCT结构,然后调用BeginPaint()和EndPaint()进行安全的绘画。使用SelectObject()选择CBitmap到兼容设备上下文,根据按钮状态选择合适的图像,然后使用DrawState()函数绘制按钮。DrawState()函数可以自动处理按钮的各种状态,如按下、鼠标悬停等。 7. **事件处理**:为按钮添加消息处理函数,例如ON_WM_LBUTTONDOWN()、ON_WM_LBUTTONUP()和ON_WM_MOUSEMOVE(),根据鼠标事件更新按钮状态。 8. **资源管理**:在程序运行结束后,记得释放所有分配的资源,如CBitmap、CDC和设备上下文。 在提供的"PNG透明按钮工程"压缩包中,应包含以下组件: - 工程文件(.vcxproj) - 源代码文件(.cpp和.h) - libpng库文件(.lib和.dll) - 示例PNG图像文件 - 资源文件(.rc) 通过阅读和分析这些文件,你可以理解如何在MFC中实现PNG透明按钮,并将其应用到自己的项目中。这个示例是一个很好的起点,展示了如何将现代图像格式与MFC的经典API结合,为Windows应用程序增添更多视觉吸引力。
2025-04-03 11:44:09 1.01MB
1