基于模型预测控制的储能双向DCDC变换器仿真研究:模型构建、功能实现与结果分析,基于模型预测控制的储能双向DCDC变换器仿真研究:仿真模型、实现与结果展示,模型预测控制MPC的储能双向DCDC变器 仿真展示为储能双向DCDC变器,采用模型预测电流控制。 仿真模型包括:蓄电池模型、双向DCDC变器主电路、下垂控制、模型预测电流控制(fcn代码实现)。 结果如图所示,跟踪期望能力强,功能实现完整。 文件包括: [1]仿真模型 [2]相关参考文献。 ,模型预测控制MPC;储能双向DCDC变换器;仿真展示;蓄电池模型;主电路;下垂控制;fcn代码实现;跟踪期望能力强;功能实现完整;相关参考文献。,模型预测控制MPC在储能双向DCDC变换器中的应用及仿真研究
2025-03-29 13:10:15 2.05MB css3
1
MPC控制器设计,模型预测控制,线性时变模型预测控制,LTV MPC,提供理论讲解与应用实现。 提供MPC算法、LTV MPC 算法在直升机和四旋翼中的应用实例。 提供模型预测控制资料。 提供matlab中模型预测控制工具箱mpcDesign 的使用讲解。
2025-03-27 09:37:49 402KB 开发语言
1
1. Matlab实现粒子群优化算法优化支持向量机的数据回归预测(完整源码和数据) 2. 多变量输入,单变量输出,数据回归预测 3. 评价指标包括:R2、MAE、MSE、RMSE 4. 包括拟合效果图和散点图 5. Excel数据,暂无版本限制,推荐2018B及以上版本 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
1
四旋翼飞行器模型预测控制仿真带PPT 四旋翼无人机 四旋翼飞行器模型预测控的MATLAB仿真,纯M代码实现,最优化求解使用了CasADi优化控制库(绿色免安装)。 CasADi我已下到代码目录里,代码到手可直接运行。 运行完直接plot出附图仿真结果。 配套30页的ppt,简介了相关原理与模型公式,详见附图。 关联词:无人机轨迹跟踪,无人机姿态控制, MPC控制。
2025-01-21 22:43:23 1.51MB 哈希算法
1
在现代自动化控制领域,PID(比例-积分-微分)控制器因其简单易用和稳定性而广泛应用。然而,传统的PID控制器存在参数整定困难、适应性不足等问题,这限制了其在复杂系统中的性能。为了解决这些问题,研究人员将神经网络与PID控制器相结合,并引入了优化算法,如粒子群优化(PSO,Particle Swarm Optimization),形成了神经网络PID控制策略。 粒子群优化是一种仿生优化算法,源自对鸟群和鱼群集体行为的研究。它通过模拟群体中的个体在搜索空间中移动和优化,寻找最优解。在神经网络PID控制中,PSO用于调整神经网络的权重和阈值,从而实现PID参数的自适应优化。 神经网络,特别是前馈型的多层感知器(MLP,Multi-Layer Perceptron),被用来作为非线性映射工具,它可以学习并逼近复杂的系统动态。在神经网络PID控制中,神经网络负责预测系统的未来输出,以此来改善PID控制器的决策。相比于固定参数的PID,神经网络可以根据系统的实时状态动态调整其参数,提高控制性能。 具体来说,神经网络PID控制系统的工作流程如下: 1. 初始化:设定粒子群的位置和速度,以及神经网络的初始参数。 2. 输入处理:输入信号经过神经网络进行预处理,形成神经网络的输入向量。 3. 粒子群优化:利用PSO算法更新神经网络的权重和阈值,即PID参数。每个粒子代表一组PID参数,其适应度函数通常是系统的性能指标,如稳态误差、超调量等。 4. 输出计算:根据优化后的神经网络参数,计算PID控制器的输出信号。 5. 系统响应:将PID控制器的输出应用于系统,观察系统响应。 6. 反馈循环:根据系统响应调整粒子的位置,然后返回步骤2,直至满足停止条件。 这种结合了PSO和神经网络的PID控制策略有以下优点: - 自适应性强:能够自动适应系统的变化,提高控制性能。 - 鲁棒性好:对系统模型的不确定性及外部扰动具有较好的抑制能力。 - 调参简便:通过PSO优化,无需人工反复调试PID参数。 - 实时性能:能够在短时间内完成参数优化,满足实时控制需求。 SPO_BPNN_PID-master这个文件名可能代表了一个关于“基于粒子群优化的神经网络PID控制”的开源项目或代码库。在这个项目中,开发者可能提供了实现这种控制策略的代码,包括神经网络的构建、PSO算法的实现以及PID参数的优化过程。使用者可以通过研究和修改这些代码,应用到自己的控制系统中,或者进一步研究优化方法以提升控制效果。 基于粒子群优化的神经网络PID控制是自动化控制领域的创新应用,它将先进的优化算法与智能控制理论相结合,为解决传统PID控制器的局限性提供了一种有效途径。通过这样的方法,我们可以设计出更加智能化、自适应的控制系统,以应对日益复杂的工程挑战。
2025-01-21 22:42:14 6KB 神经网络
1
两电平三相并网逆变器模型预测控制MPC 包括单矢量、双矢量、三矢量+功率器件损耗模型 Matlab simulink仿真(2018a及以上版本)
2024-11-28 23:30:05 62KB matlab
1
线性参变(LPV)+鲁棒模型预测控制(RMPC)+路径跟踪(PTC),目前能实现20-25m s的变速单移线和10-15m s的变速双移线。 考虑速度和侧偏刚度变化,基于二自由度模型和LMI设计鲁棒模型预测控制器。 上层考虑状态约束,输入约束进行控制率在线求解,计算得到前轮转角和附加横摆力矩,下层通过最优化算法求出四轮转矩。 算法采用simulink的sfunction进行搭建,和carsim8.02进行联合仿真,包含出图m文件和简单的说明文档。 本套文件内含一个主要的mdl文件,一个出图m文件,一个说明文档以及carsim8.02的cpar文件。 MATLAB2020a以上版本和carsim8.02版本
2024-10-23 21:46:50 403KB
1
粒子群优化(PSO, Particle Swarm Optimization)是一种模拟自然界中鸟群或鱼群觅食行为的全局优化算法,由Kennedy和Eberhart在1995年提出。该算法基于群体智能,通过群体中每个粒子(即解决方案的候选解)的相互作用和对最优解的追踪来寻找问题的最优解。以下是13种粒子群优化算法的概述: 1. **基本粒子群优化算法(Basic PSO)**:这是最原始的PSO形式,每个粒子根据其自身经验和全局经验更新速度和位置,寻找全局最优解。 2. **带惯性的粒子群优化(Inertia Weight PSO)**:通过调整惯性权重,平衡全局探索与局部搜索的能力,防止过早收敛。 3. **局部搜索增强的PSO(Locally Enhanced PSO)**:增加局部搜索机制,提高算法在局部区域的优化能力。 4. **全局搜索增强的PSO(Globally Enhanced PSO)**:通过改进全局最佳位置的更新策略,加强全局搜索性能。 5. **混沌粒子群优化(Chaos PSO)**:引入混沌理论中的混沌序列,提高算法的全局探索性,避免早熟收敛。 6. **自适应粒子群优化(Adaptive PSO)**:动态调整算法参数,如学习因子和惯性权重,以适应不同复杂度的问题。 7. **多领导粒子群优化(Multi-Leader PSO)**:设置多个局部最优解作为领导者,引导粒子群体进行多元化搜索。 8. **遗传粒子群优化(Genetic PSO)**:结合遗传算法的重组和突变操作,增强粒子群的多样性。 9. **模糊粒子群优化(Fuzzy PSO)**:利用模糊逻辑控制粒子的运动,提高算法的鲁棒性和适应性。 10. **协同粒子群优化(Cooperative PSO)**:粒子之间存在协同效应,通过信息共享提高整体性能。 11. **多策略混合粒子群优化(Hybrid PSO)**:结合其他优化算法,如模拟退火、遗传算法等,形成复合优化策略。 12. **约束处理的PSO(Constraint Handling PSO)**:针对有约束条件的优化问题,有效处理约束,避免无效搜索。 13. **自适应学习率的PSO(Adaptive Learning Rate PSO)**:动态调整学习率,使得算法在不同阶段保持合适的搜索力度。 这些算法在解决工程优化、机器学习、神经网络训练、函数优化等问题时展现出强大的能力。例如,协同PSO可以改善局部搜索,混合PSO结合多种优化策略以提高求解质量,而约束处理PSO则适用于实际应用中的受限制问题。通过不断研究和改进,粒子群优化算法已经在各个领域得到了广泛应用,并且还在持续发展之中。
2024-10-07 08:54:07 8KB PSO
1
   要用模型预测控制(MPC)做算法的对比实验,发现写纯.m文件有点麻烦,毕竟我不深入原理,于是用MATLAB/SIMULINK自带的MPC controller模块,真是太节省时间了。MPC需4个模块:被控对象的数学模型、预测模型、优化算法以及矫正反馈。使用自带的MPC control模块的话,只需要知道被控对象的数学模型就行了。下面用一个实例进行演示。 matlab程序(含simulink和.m程序),完整运行
2024-09-24 14:35:37 17KB matlab MPC simulink 模型预测
1
相关博文请查看:https://blog.csdn.net/weixin_44044411/article/details/107969423,本视频为博主上传的,此博文的配套仿真视频
2024-09-19 13:59:55 3.97MB MPC 无人驾驶
1