【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2025-07-19 14:12:02 1.17MB 毕业设计 课程设计 项目开发 资源资料
1
MeterSphere2Case 将MeterSphere数据转换为HttpRunner的Yaml测试用例。 下载chrome插件 用法 要查看MeterSphere2Case版本: $ python main.py -V 0.0.1 要查看可用选项,请运行 $ python main.py -h usage: main.py [-h] [-V] [--log-level LOG_LEVEL] [MeterSphere_testset_file] [output_testset_file] Convert MeterSphere testcases to JSON testcases for HttpRunner. positional arguments: MeterSphere_testset_file Specify MeterSphere
2025-07-18 18:20:11 7KB Python
1
模拟IC电路噪声仿真大全:从初级到进阶教学与射频SP噪声详解,包括Transi瞬态噪声与PSD分析,《模拟IC电路噪声仿真全解析:从初级到进阶,含射频SP噪声与实际应用案例》,模拟ic 电路噪声仿真教学,保姆级教学 三份文档,一份82页初级教学,一份92页进阶教学,一份38页射频sp噪声。 都是有配套电路文件压缩包 直接下载,virtuoso直接使用,免安装 初级教学,有6个小案例教学。 首先学会Transient Noise Analysis的仿真设置,这样设置的原理是什么?还有怎么显示PSD?还有瞬态噪声和AC噪声有什么区别?噪声的fmax与fmin怎么设置?参数噪声刻度?瞬态噪声和周期稳态噪声Pnoise有何区别?怎么测出RC滤波电路的真实噪声? 进阶教学,三个小案例教学 1,开关电容放大器的噪声,PSD仿真 2,环形振荡器的jitter和相位噪声仿真 3,buffer的时域噪声和jitter抖动仿真 射频ic电路,以低噪声放大电路LNA为案例,怎么使用SP仿真方法仿真出一些噪声指标参数(满9张图了,没放图片) ,ic电路;噪声仿真教学; 初级教学; 进阶教学; 射频SP噪声;
2025-07-17 17:40:12 4.2MB 哈希算法
1
在这个基于逻辑回归的癌症预测案例中,我们关注的是利用机器学习技术来区分乳腺癌的良性与恶性。逻辑回归(Logistic Regression)是一种广泛应用于分类问题的统计方法,尤其适合处理二分类问题,如本案例中的良性和恶性肿瘤的判断。 我们需要理解逻辑回归的工作原理。逻辑回归虽然名字中含有“回归”,但实际上它是一种分类模型。它通过线性回归的预测值(连续数值)经过sigmoid函数转换为概率值,使得输出在0到1之间,从而可以用于分类决策。sigmoid函数的表达式为:f(x) = 1 / (1 + e^-x),它将任何实数值映射到(0,1)区间,便于解释为概率。 在乳腺癌预测中,我们通常会有一组特征数据,例如肿瘤的大小、形状、质地、细胞核的大小和形状等。这些特征作为逻辑回归模型的输入,模型通过学习这些特征与乳腺癌类别之间的关系,构建出一个预测模型。训练过程包括参数优化,常见的优化算法有梯度下降法(Gradient Descent)或者更先进的优化算法如拟牛顿法(Quasi-Newton)。 在实际操作中,我们通常会分为以下几个步骤: 1. 数据预处理:清洗数据,处理缺失值,进行特征编码(如将分类变量转换为虚拟变量),并可能进行特征选择,减少无关特征对模型的影响。 2. 划分数据集:将数据集分为训练集和测试集,通常比例为70%训练,30%测试,以评估模型在未知数据上的表现。 3. 模型训练:使用训练集数据拟合逻辑回归模型,调整模型参数,比如正则化参数(L1或L2正则化)以防止过拟合。 4. 模型评估:在测试集上评估模型的性能,常用的评估指标有准确率、精确率、召回率、F1分数以及混淆矩阵等。 5. 模型优化:根据评估结果调整模型参数或尝试不同的特征工程,以提高模型的预测能力。 6. 模型应用:最终模型可用于新病人的乳腺癌预测,提供临床决策支持。 在这个案例中,"ahao111"可能是数据集文件的名字,它可能包含了患者的各种特征和对应的肿瘤类别。为了深入理解这个模型,我们需要查看具体的数据文件,分析特征分布,以及模型的训练和评估细节。通过这些,我们可以了解逻辑回归如何在实际问题中发挥效用,并进一步探讨如何改进模型以提升预测准确性。
2025-07-16 21:44:11 32KB
1
计及多能耦合的区域综合能源系统电气热能流仿真计算软件Matlab参考版本代码介绍,基于Matlab的多能耦合区域综合能源系统电气热能流计算仿真软件与案例分析,计及多能耦合的区域综合能源系统电气热能流计算 仿真软件:matlab 参考文档:《计及多能耦合的区域综合能源系统最优能流计算》 代码介绍:该程序复现《计及多能耦合的区域综合能源系统最优能流计算》的电气热能流耦合模型,采用案例节点系统(电力系统33节点+天然气系统14节点+热力系统17节点) 计算多能耦合下的不同能源的潮流,未实现内点法的优化过程,是很宝藏的多能耦合基础程序,实现了电-气-热-集线器中关键器件模型构建和耦合潮流计算,很具有参考价值。 ,多能耦合; 区域综合能源系统; 电气热能流计算; MATLAB仿真软件; 案例节点系统; 潮流计算; 关键器件模型; 耦合模型。,Matlab仿真的多能耦合综合能源系统电气热能流耦合计算程序
2025-07-15 21:30:44 3.06MB safari
1
在《JVM开发实战项目案例分析》中,我们主要探讨的是如何将Java虚拟机(JVM)技术应用于实际开发,并通过具体的项目案例进行深入解析。JVM是Java平台的核心组成部分,它负责运行Java应用程序,提供了跨平台的执行环境。本项目案例分析旨在帮助开发者提升对JVM的理解,优化代码性能,解决实际开发中遇到的问题。 我们要理解JVM的工作原理。JVM接收编译后的字节码(.class文件),并将其转换为机器语言执行。这个过程包括类加载、验证、准备、解析和初始化等阶段。在项目中,我们可以通过分析JVM内存模型来优化程序性能,例如调整堆内存大小,设置新生代和老年代的比例,以及正确使用垃圾回收策略。 JVM调优是开发者必备的技能之一。在《大神带你学Java(第1天)》的文件中,可能会详细讲解如何使用各种工具如JConsole、VisualVM或JProfiler来监控和诊断JVM状态,包括CPU使用率、内存分配、线程状态等。通过这些工具,我们可以定位性能瓶颈,比如频繁的垃圾回收导致的暂停时间过长,或者内存泄漏问题。 此外,JVM中的垃圾回收机制也是优化的关键。了解不同的垃圾收集器,如Serial、Parallel、CMS和G1,以及它们各自的优点和适用场景,能帮助我们选择最适合项目的GC策略。例如,在需要低延迟的系统中,可能选择G1收集器,而在资源有限的环境下,Serial或Parallel可能更为合适。 在实际项目中,我们还会遇到类加载器的问题。JVM有多个类加载器,如bootstrap loader、extension loader、application loader等,它们共同构成了类加载的双亲委托模型。理解这个模型有助于解决类冲突和安全问题。 还有,JVM的编译优化(JIT,Just-In-Time编译)也是提升性能的重要手段。JIT会将频繁执行的热点代码编译成本地代码,提高执行效率。开发者可以使用-XX:CompileThreshold等参数调整JIT的触发条件。 线程管理和并发编程在多线程项目中至关重要。JVM提供了一些内置的同步机制,如synchronized关键字、java.util.concurrent包下的工具类等。理解这些机制的底层实现,能够帮助我们编写出高效且线程安全的代码。 《JVM开发实战项目案例分析》会通过实际的项目案例,详细讲解如何运用JVM的各种特性,解决开发中遇到的实际问题,提高程序的运行效率和稳定性。通过学习,开发者不仅可以提升专业技能,还能在项目实践中游刃有余。
2025-07-15 14:14:31 17.96MB 项目 案例分析
1
目标检测是计算机视觉领域中的一个核心任务,它旨在在图像或视频中自动定位并识别出特定的对象。YOLO,即“你只看一次”(You Only Look Once),是一种高效的目标检测算法,它以其实时处理速度和高精度而受到广泛关注。本系列教程——"目标检测YOLO实战应用案例100讲-基于YOLOV5的深度学习卫星遥感图像检测与识别",将深入探讨如何利用YOLOV5这一最新版本的YOLO框架,对卫星遥感图像进行有效分析。 YOLOV5是YOLO系列的最新迭代,由Joseph Redmon、Alexey Dosovitskiy和Albert Girshick等人开发。相较于早期的YOLO版本,YOLOV5在模型结构、训练策略和优化方法上都有显著改进,尤其是在准确性、速度和可扩展性方面。它采用了更先进的网络结构,如Mish激活函数、SPP模块和自适应锚框等,这些改进使得YOLOV5在处理各种复杂场景和小目标检测时表现更加出色。 卫星遥感图像检测与识别是遥感领域的关键应用,广泛应用于环境监测、灾害预警、城市规划等领域。利用深度学习技术,尤其是YOLOV5,我们可以快速准确地定位和识别图像中的目标,如建筑、车辆、植被、水体等。通过训练具有大量标注数据的模型,YOLOV5可以学习到不同目标的特征,并在新的遥感图像上实现自动化检测。 在实战案例100讲中,你将了解到如何准备遥感图像数据集,包括数据清洗、标注以及数据增强。这些预处理步骤对于提高模型的泛化能力至关重要。此外,你还将学习如何配置YOLOV5的训练参数,如学习率、批大小和训练轮数,以及如何利用GPU进行并行计算,以加速训练过程。 教程还将涵盖模型评估和优化,包括理解mAP(平均精度均值)这一关键指标,以及如何通过调整超参数、微调网络结构和进行迁移学习来提高模型性能。同时,你将掌握如何将训练好的模型部署到实际应用中,例如集成到无人机系统或在线监测平台,实现实时的目标检测功能。 本教程还会探讨一些高级话题,如多尺度检测、目标跟踪和语义分割,这些都是提升遥感图像分析全面性的关键技术。通过这些实战案例,你不仅能掌握YOLOV5的使用,还能了解深度学习在卫星遥感图像处理领域的前沿进展。 "目标检测YOLO实战应用案例100讲-基于YOLOV5的深度学习卫星遥感图像检测与识别"是一套详尽的教程,涵盖了从理论基础到实践操作的各个环节,对于想要在这一领域深化研究或应用的人士来说,是不可多得的学习资源。
2025-07-12 23:25:01 53.71MB 目标检测 深度学习
1
内容概要:本文档展示了基于STM32实现的智能床垫外设控制应用案例,具备压力感应和睡眠监测功能。通过详细C++代码,介绍了系统初始化(包括GPIO、USART、定时器)、压力传感器初始化与读取、睡眠状态分析以及数据发送到服务器等功能模块。具体实现了每秒更新一次的压力数据采集,依据预设阈值判断用户是否处于睡眠状态,并简单评估呼吸状况。最后将睡眠状态、呼吸是否正常及各压力传感器的数据打包成字符串格式经由串口发送出去。 适合人群:对嵌入式开发有一定了解,尤其是熟悉STM32单片机编程的工程师或学习者。 使用场景及目标:①学习如何利用STM32进行外设控制,如压力传感器数据获取;②掌握睡眠监测算法的设计思路,包括如何根据压力变化判定睡眠与清醒状态、检测呼吸异常;③理解如何通过串行通信接口将监测结果传输给远程服务器或其他设备。 阅读建议:本案例提供了完整的项目框架,读者应结合自身硬件环境调整相关配置,重点关注传感器接入部分的代码实现,同时可尝试优化现有算法以提高监测准确性。
2025-07-12 20:57:29 21KB 嵌入式开发 STM32 压力感应
1
**WCF(Windows Communication Foundation)**是微软.NET框架下的一种面向服务的通信技术,它提供了构建高度可互操作、安全、可靠且灵活的分布式应用程序的能力。在这个“WCF案例客户端服务端”中,我们看到一个典型的WCF应用场景,即通过服务端与网页客户端之间的通信,实现消息的发送和接收,同时允许用户在网页端修改弹幕内容。 **WCF服务**是服务端的核心部分,它定义了服务的行为和接口,供客户端调用。在这个案例中,服务端可能包含了一个或多个服务合同(Service Contract),定义了可以被客户端调用的操作,如发送消息、接收消息以及处理弹幕更新等。服务合同通过接口定义,通常使用`[ServiceContract]`特性标记。每个操作(方法)则用`[OperationContract]`特性标识。 **WCF客户端**是调用服务端功能的程序,它可以是桌面应用、Web应用或者其他任何可以与WCF服务进行交互的应用。在这个案例中,客户端可能是网页端的JavaScript代码,通过AJAX或者Websocket等方式与WCF服务进行通信,接收消息并显示弹幕,同时将用户修改的弹幕内容发送回服务端。 **双向通信(Duplex Communication)**是WCF中的一个重要特性,它允许服务端和客户端之间进行双向的、持久的通信。在弹幕应用中,这可能意味着服务端可以在接收到新消息时主动通知客户端,而不仅仅依赖于客户端的定期轮询。实现双向通信,需要定义一个回调合同(Callback Contract),客户端需要实现这个回调合同,并通过WCF的实例化模式(如PerSession)确保服务端可以找到正确的回调对象。 **消息传递模式**:在WCF中,有多种消息交换模式(Message Exchange Patterns,MEP),如请求-响应(Request-Reply)、单向(One-Way)和双向(Duplex)。在这个案例中,由于需要实时推送消息,所以很可能采用了双向通信模式。 **安全性**:WCF提供了多种安全机制,如传输安全(Transport Security)和消息安全(Message Security),确保数据在传输过程中的安全。对于网页客户端的通信,可能会使用HTTPS来保证数据加密,防止中间人攻击。 **绑定(Binding)**:WCF服务通过绑定定义了如何与客户端通信的具体细节,如传输协议(HTTP、TCP等)、编码格式(XML、Binary等)和安全设置。根据案例描述,服务端可能使用了HTTP绑定,方便网页客户端访问。 **配置文件**:WCF服务通常会有一个配置文件(如app.config或web.config),用于定义服务的行为、绑定和终结点等信息。开发者可以通过修改配置文件来调整服务的设置。 **数据契约(Data Contract)**:为了序列化和反序列化数据,WCF使用了数据契约,这是一种定义数据结构的方式,使得服务和客户端能共享相同的数据模型。在弹幕应用中,可能包括了表示消息和弹幕的类,这些类通过`[DataContract]`和`[DataMember]`特性标记。 "WCF案例客户端服务端"是一个演示了WCF核心特性的应用,尤其是双向通信,展示了如何通过WCF在服务端和网页客户端之间实现消息的实时交换和弹幕的动态更新。通过深入理解这些知识点,开发者可以更好地构建分布式系统,实现高效、安全的通信。
2025-07-11 13:29:05 191KB
1
**正文** WCF(Windows Communication Foundation)是微软.NET框架中的一种高级通信技术,它提供了构建分布式应用程序的强大工具。在WCF中,双工通信是一种特殊的服务交互模式,允许服务和客户端之间的双向通信,就像电话对话一样,两者可以同时进行发言。这种模式与传统的请求-响应模式不同,后者只能由一方发起请求,另一方作出响应。 让我们深入理解WCF双工通信的关键步骤: 1. **服务器端定义接口**:在双工通信中,服务器端需要定义一个接口,这个接口包含服务想要调用的客户端方法。接口通常是使用`IServiceContract`接口标记的,定义在服务合同中,使用`OperationContract`属性来标记可调用的方法。 ```csharp [ServiceContract(CallbackContract = typeof(ICallback))] public interface IDuplexService { [OperationContract] void ServerMethod(); } ``` 这里的`ICallback`就是回调接口,包含客户端实现的方法。 2. **服务器声明**:服务器需要实现这个接口,并配置为支持双工通信。这通常涉及到设置绑定以支持回调,例如使用`NetTcpBinding`,并启用`CallbackBehavior`特性。 ```csharp [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)] public class DuplexServiceImpl : IDuplexService { public void ServerMethod() { // 调用客户端回调方法 ((ICallback)OperationContext.Current.GetCallbackChannel(typeof(ICallback))).ClientMethod(); } } ``` 3. **客户端实现接口**:客户端不仅需要创建一个代理类来调用服务,还需要实现服务器定义的回调接口。这样,当服务器调用回调方法时,客户端可以响应。 ```csharp class ClientCallback : ICallback { public void ClientMethod() { Console.WriteLine("客户端被服务调用了!"); } } ``` 4. **客户端传递实现对象**:在建立与服务的连接时,客户端需要提供一个实现了回调接口的对象实例。这样,WCF就能将这个对象传递给服务,让服务可以调用客户端的方法。 ```csharp var factory = new ChannelFactory("NetTcpBinding_IDuplexService"); IDuplexService serviceProxy = factory.CreateChannel(new InstanceContext(new ClientCallback())); serviceProxy.ServerMethod(); ``` 5. **服务器调用客户端方法**:一旦服务有了客户端的回调对象,它就可以像调用本地对象一样调用客户端的方法。这样,服务和客户端之间就可以进行双向通信了。 以上所述是WCF双工通信的基本工作原理。在实际应用中,可能还需要处理会话管理、错误处理、安全性等复杂问题。文件列表中的`WcfServiceLibrary2.sln`可能是服务端项目解决方案,`ConsoleApplication1`可能是客户端项目,而其他文件可能是开发过程中生成的日志或备份文件。 总结,WCF双工通信是实现双向通信的重要机制,它扩展了服务的能力,使服务能够主动向客户端推送数据,这对于实时应用,如聊天程序或股票报价系统等,是非常重要的。理解和掌握WCF双工通信的概念和实施细节对于.NET开发者来说是提升技能的重要环节。
2025-07-11 13:25:54 89KB
1