阐述了超超临界循环流化床技术可行性及超超临界参数选择,详细论述了国内外各大科研机构和锅炉制造厂超超临界循环流化床锅炉研发进展情况;从高温受热面安全性、水动力安全性、低负荷下再热蒸汽温度和低成本实现超低排放技术四个方面分析了机组选用高效超超临界参数所要攻关的主要技术和难点,并提出了解决方案,为超超临界循环流化床锅炉的研发提供了保障,同时为继续保持我国循环流化床发电技术的领先地位提供技术支持。
1
为分析循环流化床飞灰的微观特性,以某480 t/h循环流化床锅炉为研究对象,通过压汞仪和扫描电镜研究其飞灰的分形特性。研究结果表明,循环流化床锅炉飞灰含碳量随粒径的分布具有峰值特性,在37μm处,含碳量达到最大值(峰值区),48~78μm为低含碳区。飞灰具有良好的分形特性,压汞仪测得的峰值区飞灰颗粒孔比体积、比表面积和孔隙率较大,而其分形维数较小(2.227),低含碳区飞灰分形维数为2.694。峰值区飞灰颗粒为致密的实心体,低含碳区飞灰颗粒为蜂窝状。基于SEM图像计算的分形维数与基于压汞实验所得的飞灰分形特性结论一致。
2025-10-22 08:23:47 416KB 循环流化床锅炉 分形维数
1
Matlab电力系统仿真分析:单相接地、两相间短路、两相接地短路及三相短路的波形特性与应对策略,Matlab仿真电力系统故障波形:全面解析单相接地故障、两相间短路、两相接地短路及三相短路的特性与影响,Matlab 电力系统各种故障波形仿真,单相接地故障,两相间短路,两相接地短路,三相短路 ,Matlab; 电力系统故障; 波形仿真; 单相接地故障; 两相间短路; 两相接地短路; 三相短路,Matlab电力仿真:多类型故障波形分析(单相、两相及三相短路) 在电力系统运行过程中,不可避免会遇到各种故障,如单相接地、两相间短路、两相接地短路以及三相短路等。这些故障不仅会损坏电力系统设备,还可能危及系统的稳定性和安全性。Matlab作为一种强大的数学计算和仿真软件,在电力系统故障波形仿真分析方面发挥着重要作用。通过Matlab仿真,能够对上述故障类型进行深入的特性分析和影响评估。 在进行仿真分析时,首先需要建立准确的电力系统模型。这包括系统中各种元件的数学模型,如发电机、变压器、输电线路以及负载等。需要根据不同的故障类型,设置合理的故障参数,如故障位置、故障电阻等。一旦故障模型设置完毕,就可以利用Matlab的仿真工具箱进行波形仿真,实时监测系统中电流、电压等变量的动态变化。 单相接地是电力系统中最常见的故障类型之一,其特点是系统中的一相与大地发生导通,导致接地电流增大。Matlab仿真可以帮助电力工程师分析接地电流的大小和分布情况,以及对系统电压和电流波形的影响,从而采取相应的保护措施。 两相间短路是指电力系统中任意两相之间发生直接导通的故障,这种情况下,故障电流会非常大,如果没有及时处理,可能导致设备损坏。通过Matlab仿真,可以对两相间短路故障发生时的电流、电压波形进行详细分析,了解故障的暂态过程。 两相接地短路则是指电力系统中任意两相与大地之间发生导通的故障,这是最严重的故障类型之一,会造成极大的故障电流。利用Matlab进行仿真分析,可以深入理解该故障的特性,比如电流和电压波形的变化规律,以及对电力系统稳定运行的影响。 三相短路是指系统中三相之间的直接导通,这是电力系统故障中最严重的一种,可能导致整个系统的崩溃。通过Matlab的仿真,可以研究三相短路时电流、电压的变化情况,以及故障发生后的暂态过程,为系统的保护和控制提供理论依据。 在Matlab电力系统仿真分析中,对于不同类型的故障,可以通过设置不同的仿真参数来模拟各种故障场景,对故障波形进行实时监测和分析。通过对仿真结果的深入解析,可以制定出有效的应对策略,如改进电力系统的设计,优化继电保护装置的配置,以及调整电力系统的运行方式等,从而提高系统的安全性和可靠性。 Matlab电力系统仿真分析不仅限于故障波形的研究,还包括对故障后的系统动态响应、系统稳定性的评估,以及对保护设备动作行为的预测等方面。通过这些仿真分析,可以进一步提高电力系统的管理水平和故障处理能力,为电力系统的稳定运行提供技术支持。 Matlab在电力系统故障波形仿真分析中的应用,为电力系统的设计、运行、维护以及故障处理提供了一个强有力的工具。通过深入探索和研究各种故障模式,可以有效地预防和减轻故障带来的危害,确保电力系统的安全、可靠和高效运行。
2025-10-21 20:51:21 1.12MB csrf
1
内容概要:本文详细介绍了基于SCDM FM Fluent和ICEM软件的无人机螺旋桨特性分析及网格划分全流程。首先,在SCDM中进行模型简化、修复和多计算域创建,确保模型适用于流体动力学分析。接着,利用Fluent Meshing进行高质量的网格划分,特别是针对螺旋桨附近的附面层网格进行了精细化处理。然后,在Fluent中设置计算域并进行仿真,提取整机和各部分的升力、阻力、俯仰力矩、螺旋桨的拉力、扭矩等关键数据。随后,使用CFD-POST进行后处理,通过云图等可视化手段展示仿真结果,分析螺旋桨滑流对全机的影响。最后,新增了ICEM软件的网格划分模块,重点讲解了几何拓扑的检查与修复,不同网格划分方法及其注意事项。通过这一系列操作,最终得到了可用于指导无人机螺旋桨选型和动力系统效率优化的仿真结果。 适合人群:从事无人机设计、流体力学仿真分析的技术人员,尤其是希望深入了解螺旋桨特性分析及网格划分的专业人士。 使用场景及目标:① 掌握无人机螺旋桨特性分析的完整流程;② 提高网格划分的精度和效率;③ 利用仿真结果优化无人机设计和动力系统配置。 其他说明:本文不仅涵盖了理论知识,还提供了实际操作步骤,使读者能够快速上手并应用于实际项目中。
2025-10-20 18:28:20 1.41MB
1
基于出行链的电动汽车负荷预测模型:考虑时空特性与多种场景的日负荷曲线预测,电动汽车预测一:基于出行链的电动汽车负荷预测模型 1、基于四种出行链,模拟电动汽车负荷预测模型,预测居民区、工作区以及商业区日负荷曲线 2、可以根据情况进行修改为出租车以及公交车 3、考虑电动汽车时间和空间特性 4、可以根据实际研究情况,修改参数,例如考虑温度和速度的每公里耗电量、考虑交通因素的实际出行时长等等 ,电动汽车负荷预测模型; 出行链模拟; 时间和空间特性; 耗电量参数; 交通因素。,基于多维度因素的电动汽车出行链负荷预测模型研究
2025-10-20 15:18:53 304KB rpc
1
联合分析球状颗粒Mie散射特性:Lumerical FDTD与Matlab的互补应用研究,Lumerical FDTD与Matlab联合分析球状颗粒的Mie散射特性 ,Lumerical FDTD; Matlab; 球状颗粒; Mie散射特性,Lumerical-Matlab联合分析Mie散射特性 球状颗粒的Mie散射特性是光学和光子学领域研究中的重要内容。Mie散射理论提供了一种精确计算光与均匀球形颗粒相互作用的方法。为了更好地理解和研究这一特性,研究者们倾向于采用多种计算工具和软件进行联合分析。在这些工具中,Lumerical FDTD和Matlab是两个非常重要的工具。 Lumerical FDTD是一种基于有限差分时域(Finite-Difference Time-Domain, FDTD)方法的光学模拟软件。它能够模拟复杂结构对光波的影响,包括波的传播、散射、反射和折射等现象。FDTD方法的优势在于能够直接计算电磁场在时域中的变化,因此能够模拟光与物质相互作用的瞬态过程。 Matlab是一种广泛使用的高性能数值计算和可视化软件。它提供了强大的数学计算功能,能够进行矩阵运算、数据拟合、信号处理、图像处理等多个领域的应用。在光散射的研究中,Matlab通常用于数据分析、后处理以及算法开发。 当我们将Lumerical FDTD与Matlab联合使用时,可以在FDTD软件中进行光与球状颗粒相互作用的数值模拟,得到散射场的空间分布和时域信息。然后,可以将模拟得到的数据导出到Matlab中进行后处理,如绘制散射效率、角度分布等散射特性曲线,以及进行进一步的数据分析和算法开发。 球状颗粒的Mie散射特性研究在多个领域都有应用价值。例如,在大气科学中,研究大气中悬浮颗粒的散射特性对于理解云层形成和大气辐射传输具有重要意义。在材料科学中,研究微粒在不同波长下的散射特性有助于材料的光学设计和性能评估。在生物医学工程中,研究细胞和组织对光的散射特性对于光学成像和诊断技术的发展也非常重要。 为了实现Lumerical FDTD与Matlab的联合分析,研究者需要熟悉两个软件的基本操作和接口编程。例如,通过编写脚本程序,可以自动化数据的导出和导入过程,从而提高研究效率。此外,为了确保联合分析的准确性,还需要对模拟结果进行校验和验证。 通过联合分析球状颗粒的Mie散射特性,研究者可以更深入地了解光与物质相互作用的物理过程,为相关领域的技术开发和应用研究提供理论依据和技术支持。
2025-10-18 18:28:48 38KB safari
1
**正文** Walther方程是一种在石油工程领域中广泛应用的模型,主要用于估算石油在不同温度下的粘度。这种方程由Jürgen Walther提出,它为石油工程师提供了一个简洁的方法来预测多组分石油混合物在各种温度条件下的流变特性。在MATLAB环境中实现这一方程,可以方便地进行数值计算和数据分析。 MATLAB是一种强大的编程和数值计算平台,它提供了丰富的数学函数库和可视化工具,使得处理复杂科学计算和工程问题变得相对容易。在本案例中,通过MATLAB实现Walther方程,我们可以快速地计算出石油在特定温度下的动态粘度和运动粘度,这对于石油工业中的流体动力学模拟、管道设计、油藏工程等应用至关重要。 Walther方程的基本形式可能包括以下参数: 1. **基础粘度**:在参考温度下(如40°C或100°C)测得的石油粘度。 2. **温度系数**:反映粘度随温度变化的速率,通常用温度的指数形式表示。 3. **粘度指数**:衡量粘度随温度变化的程度,是评价石油粘温性质的一个重要指标。 4. **其他可能的修正因子**:考虑到石油的复杂组成和非理想行为,可能需要额外的校正项来提高预测精度。 在MATLAB代码中,这些参数会以变量的形式出现,然后通过一定的数学公式计算出目标温度下的粘度。通常,用户需要输入至少两个已知温度下的粘度值,以便确定方程中的参数。MATLAB代码可能会包含以下步骤: 1. **数据输入**:读取或输入已知温度和对应粘度的数据。 2. **参数估计**:使用非线性拟合方法(如Levenberg-Marquardt算法)找到最佳的参数值,使模型预测的粘度与实际测量值最接近。 3. **粘度计算**:利用得到的参数,在用户指定的温度范围内计算动态粘度和运动粘度。 4. **结果展示**:可能包括图形化展示粘度随温度的变化趋势,或者将结果以表格形式输出。 在`walther.zip`压缩包中,可能包含MATLAB源代码文件(`.m`文件),其中详细地实现了上述过程。用户可以通过加载这个代码,输入自己的数据,就能得到相应的粘度预测结果。这不仅提高了工作效率,也使得复杂的物理模型变得更加易用和普及。 Walther方程结合MATLAB的强大计算能力,为石油行业的粘度估算提供了有效的工具。通过理解和应用这个模型,工程师们能够更好地理解和控制石油流动行为,从而优化石油的开采、运输和处理过程。
2025-10-13 22:24:23 2KB matlab
1
内容概要:本文详细介绍了利用COMSOL进行IGBT(绝缘栅双极晶体管)模块的电热力多物理场仿真的方法和技术细节。首先探讨了电热耦合仿真,通过焦耳热效应模拟温度变化对材料性能的影响,并强调了温度相关材料参数的重要性。其次,讨论了机械应力场仿真,特别是在多次循环加载下模块的塑性变形及其预测方法。最后,针对模块截止状态下的电场分布进行了深入分析,特别关注封装结构边缘的电场强度,并提出了一些优化仿真结果的技术手段,如调整介电常数的各向异性。此外,还分享了网格划分和计算效率方面的实用技巧。 适合人群:从事电力电子器件设计、制造以及可靠性评估的研究人员和工程师。 使用场景及目标:适用于需要深入了解IGBT模块内部复杂物理现象的研究项目,旨在提高仿真精度和可靠性,优化产品设计。 其他说明:文中提供了具体的代码片段和操作步骤,帮助读者更好地理解和实施多物理场仿真。同时提醒读者注意实验数据与仿真结果之间的差异,确保模型准确性。
2025-10-13 16:18:50 321KB
1
在研究金属氢化物反应器的吸氢过程时,热质传递特性是十分关键的因素,尤其在反应器的优化设计和性能分析中。本研究提出了一个圆柱型反应器的二维多物理场模型,旨在更准确地模拟和预测吸氢过程中的热质传递特性。模型的建立基于商业软件COMSOL Multiphysics V3.5a,考虑到换热流体的温度和流速变化对仿真结果的影响。通过对模型的数值求解,分析了若干关键参数对反应器性能的作用。研究结果揭示,管外换热系数和氢化物床层的有效导热系数对于提高反应器性能至关重要。本研究模型及获得的数据可用于指导金属氢化物反应器的优化设计。 金属氢化物是一种可以和氢气在一定条件下发生可逆反应的功能材料,其过程中伴随着显著的热效应。因此,金属氢化物在氢气储存、热泵、制冷、蓄热以及氢气压缩等多个领域都有潜在的应用价值。要发挥这些应用价值,金属氢化物需要装载在反应器内部,而反应器内的换热装置是整个系统的核心。为了深入理解金属氢化物反应器的性能,研究者们提出了多种反应器模型。比如EIOsery建立的一维模型,只包括了传热方程和反应动力学方程,采用有限差分法进行求解。Jemni等人基于体积平均法建立了二维模型,并经过实验验证。而Aldas等人将二维模型扩展至三维,发现壁面冷却条件对于氢化反应的速率有重要影响。Freni等人进一步提出了包含多根换热管的三维模型,此模型考虑了换热流体温度变化的影响。 在研究金属氢化物反应器的多物理场分析中,本文聚焦于吸氢过程的热质传递特性。热质传递涉及多个物理场,如温度场、流速场、浓度场等,它们之间相互作用并影响着反应器的性能。通过建立精确的多物理场模型,可以更好地理解和预测这些过程。本模型的具体贡献包括: 1. 提出了一种新的二维圆柱型反应器多物理场模型,模拟了吸氢过程中的热质传递特性,考虑了换热流体温度和流速变化对数值仿真结果的影响。 2. 采用COMSOL Multiphysics V3.5a软件包数值求解模型,这是一个商业软件平台,广泛用于复杂工程问题的仿真分析。 3. 讨论了不同参数对反应器性能的影响,特别是管外换热系数和氢化物床层的有效导热系数对性能改善的作用。 4. 确定了反应器性能关键参数,为反应器设计提供了重要的理论指导和技术支持。 本研究的结果对金属氢化物反应器的设计和优化具有重要的实践意义,有助于提高反应器在储氢等领域的应用效率和性能。随着储氢技术的进一步发展和应用需求的不断增长,本研究提供了一种有效的研究方法,可被进一步应用于不同的氢化物系统和反应器设计。此外,研究成果还可能对相关领域的科学研究和技术开发产生积极的推动作用。
2025-10-04 02:02:01 526KB 首发论文
1
在微波工程和射频识别技术领域,微带线作为一种基础的传输媒介,其特性阻抗的设计与优化至关重要。特性阻抗的匹配直接影响到信号传输的效率和质量,而50欧姆的特性阻抗是射频通信中常用的标准阻抗值。为了设计出符合这一标准的微带线,并确保其在各种条件下仍具有良好的性能稳定性,需要借助于专业仿真软件HFSS(High Frequency Structure Simulator)进行微带线的三维建模和仿真分析。 微带线的设计原理涉及到信号传输的基本原理。微带线由介质基片、金属导带以及金属接地板组成。其中,介质基片起着支撑和引导电磁波传播的作用。由于介质基片的高介电常数,电磁场主要集中在导线和接地板之间的介质区域,这样便能减少辐射损耗。微带线中的电磁波在介质基片和空气两种介质中传播,因此需要引入等效介电常数概念,将微带线视作均匀介质处理,以简化分析。 等效介电常数的计算涉及到导体带宽度、介质基片厚度和介质的相对介电常数等参数。通过这些参数,可以计算出微带线的特性阻抗、相位常数、波长、相速度等特性参量。这些特性参量的计算表达式往往基于特定的经验公式,不同仿真软件可能会有不同的近似公式。 在设计过程中,首先需要创建微带线的3D模型,并设置激励。模型包括衬底、导线和空气部分,通过设置端口激励可以模拟信号的传输过程。求解频率和迭代次数的设置是为了确保仿真结果的准确性和收敛性。在此基础上,通过调节导体带的宽度参数width,可以控制微带线的特性阻抗,使其满足50欧姆的标准。 完成初步的模型搭建和参数设置后,需要通过灵敏度分析和统计分析对设计进行评估。灵敏度分析主要是观察目标值(即特性阻抗)在微小变化下对微带线阻抗的影响。而统计分析则是在给定高度height和宽度width随机组合的情况下,评估特性阻抗是否保持在预期的范围内,即50±2欧姆。这种分析有助于了解设计在制造公差范围内的可控性以及不同参数下的设计有效性。 最终,通过仿真结果的分析,可以发现当导体带宽度增加时,阻抗实部会呈现下降趋势。通过优化参数,可以确定使阻抗达到50欧姆的具体宽度值。在确定了这个宽度值后,进行的灵敏度分析和统计分析显示,设计在一定范围内是稳定的,制造公差对阻抗的影响可控,设计的有效性在不同的参数组合下得到了验证。 在技术实现上,需要注意的是,由于现实中可能存在的各种技术限制,如介质基片的非理想性、制作精度的限制等,实际的微带线特性阻抗可能会与理论计算有所差异。因此,在实际应用中可能需要进一步的实验和调整,以确保设计与预期性能的匹配。 通过HFSS软件进行微带线特性阻抗的优化与分析是一个复杂的过程,涉及到微带线的理论知识、仿真模拟、参数优化以及性能稳定性评估等多个方面。通过该过程设计出的微带线不仅能够满足特定的特性阻抗要求,而且能够在制造和使用中展现出较高的稳定性和可靠性。
2025-09-30 11:46:47 1.06MB RFID HFSS
1