标题中的"NACA 2412"指的是一个特定的机翼剖面形状,它属于NACA(美国国家航空咨询委员会)四数字系列。这个系列的剖面设计是根据四个数字来定义的,其中前两个数字表示机翼厚度的最大百分比在离前缘一定距离处达到,后两个数字表示该最大厚度位置到前缘的距离占整个弦长的百分比。NACA 2412意味着在20%弦长的位置,机翼厚度达到最大,为4%的弦长。 描述中提到的"弦上的涡流分离"是指在飞行中,气流在经过机翼表面时,由于机翼的形状和攻角,会在某些点上产生涡旋分离。这通常发生在升力降低、阻力增加的不利情况下,例如在大攻角或高速流动时。涡流分离会导致效率下降,因为它增加了空气流动的不稳定性,并且可能导致噪声和振动。 "Abbott & Von Doenhoff"和"Kuethe & Chow"是两位著名的航空工程师,他们对翼型性能进行了广泛的研究并发表了相关文献。他们的数据被用作计算和验证机翼表面压力分布的标准参考。比较这些数据有助于确保计算的准确性和可靠性。 在MATLAB环境下,"hw2.m.zip"可能包含一个名为"hw2.m"的MATLAB脚本文件,用于实现对NACA 2412翼型的流体力学分析。MATLAB是一个强大的数值计算工具,可以用于解决复杂的数学问题,包括求解流体动力学方程,如纳维-斯托克斯方程,以预测翼型表面的压力分布。 这个脚本可能包含了以下步骤: 1. 定义NACA 2412翼型的几何参数。 2. 使用数值方法(如有限差分或边界元方法)构建翼型的流场模型。 3. 应用适当的边界条件,如无滑移条件(机翼表面的气流速度等于零)和远场条件。 4. 解决流体力学方程,计算流场的速度和压力分布。 5. 对比计算结果与Abbott & Von Doenhoff和Kuethe & Chow的数据,评估模型的准确性。 通过MATLAB编程,用户不仅可以可视化翼型的压力分布,还可以分析涡旋分离的影响,优化设计,提高飞机性能。这样的工作对于理解和改进飞行器的气动特性至关重要。
2025-05-17 12:24:04 3KB matlab
1
comsol复现-非对称介电超表面bic 复现以下所有图 ,COMSOL复现研究:非对称介电超表面的双折射与干涉现象全图解析,深入解析COMSOL复现非对称介电超表面BIC现象,全面展示所有图像复现过程,关键词:comsol复现; 非对称介电超表面; BIC(Bound States in the Continuum); 复现所有图;,复现COMSOL非对称介电超表面BIC模型全套图像研究
2025-05-16 16:17:55 822KB rpc
1
表面逆向设计是光学和光电子领域的先进研发方向,尤其在实现传统光学元件功能的同时,能够探索全新的光学现象和应用。超表面逆向设计的核心在于使用逆向工程技术来实现特定的光学功能,这一技术正处于迅速发展的阶段,并广泛应用于光学系统、滤波器以及能够动态调整光学特性的器件等领域。 在超表面的设计中,耦合模理论(CMT)扮演着至关重要的角色。这一理论用于分析和设计超表面的电磁行为,特别是在研究光波与超表面相互作用时的模式耦合现象。这一理论在实现新型光学功能,例如负折射、光学隐身和超分辨率成像方面具有重要应用。此外,耦合模理论在提升能量转换效率、开发动态可调谐超表面、实现多波长和多角度操作等方面也有显著的应用前景。 在技术实现上,超表面逆向设计的实现涉及多个方面的研究,如电磁仿真、材料科学、电子工程等。以电磁仿真为例,CST Microwave Studio是一款强大的电磁仿真软件,能够帮助研究者建立超表面的仿真模型,并进行模拟分析,从而优化设计,实现预期的光学功能。另一个关键工具是有限时域差分法(FDTD),它是一种利用计算机模拟光波在介质中传播和与物体相互作用的数值解法。FDTD在超表面逆向设计中的应用十分广泛,可以与Python编程语言结合,实现逆向设计的自动化和优化。 从应用角度看,超表面逆向设计的应用前景十分广阔,包括在太阳能电池、光电探测器等能量转换设备中的应用,以及在多波长和多角度操作中的应用。在量子光学和光子学领域,通过超表面操控量子态,探索量子通信、量子计算和量子信息处理中的应用也是研究的热点。在拓扑光学和新型光子晶体设计方面,基于超表面的结构设计也展示了巨大的潜力。 本次“超表面逆向设计及前沿应用(从基础入门到论文复现)”线上培训班,旨在传授超表面设计的关键技术和理论,为参与者提供深入理解超表面技术的平台。培训内容覆盖了超表面的基础知识、逆向设计概念、耦合模理论、电磁仿真软件的使用以及FDTD逆向设计基础入门等。通过多个具体案例操作的实践教学,参与者可以更直观地理解理论知识,并掌握仿真分析的技能。培训还涉及利用耦合模理论进行逆向设计的实例,以及FDTD仿真实例,帮助参与者掌握将理论知识转化为实际应用的能力。 通过本课程的学习,参与者将能够掌握超表面设计的关键技术和理论,为未来的职业发展和技术创新打下坚实的基础。这不仅是对科研人员和工程师的一个专业技能提升机会,也是对研究生和对超表面技术感兴趣的专业人士的一个重要学习平台。
2025-05-12 15:24:14 871KB 耦合模理论 电磁仿真 FDTD
1
表面等离子传感器 ,衰减全反射matlab模拟,基于棱镜模型的角度调制
2025-05-11 10:41:09 956B matlab
1
沃尔什码matlab代码表面活性可见 将人口活动映射到皮质表面的代码 在 Matlab 命令窗口中的函数名称前键入 help 以获取使用说明。 为 Froudist-Walsh、Sean、Daniel P. Bliss、Xingyu Ding、Lucija Jankovic-Rapan、Meiqi Niu、Kenneth Knoblauch、Karl Zilles、Henry Kennedy、Nicola Palomero-Gallagher 和 Xiao-Jing Wang 开发的原始代码。 “多巴胺梯度控制对猴子皮层分布式工作记忆的访问。” bioRxiv (2020)。 和 Froudist-Walsh、Sean、Ting Xu、Meiqi Niu、Lucija Rapan、Karl Zilles、Daniel S. Margulies、Xiao-Jing Wang 和 Nicola Palomero-Gallagher。 “猕猴皮层中受体表达的梯度。” bioRxiv (2021)。 这个代码版本是为即将发表的论文 Ulysse Klatzmann 等人开发的。 (准备中) 示
2025-05-10 00:33:05 2.37MB 系统开源
1
内容概要:本文详细介绍了如何使用MATLAB实现钢板表面缺陷的检测与分类。首先通过对原始图像进行灰度变换、对比度增强和滤波处理,提高图像质量。接着采用全局优化阈值分割将缺陷从背景中分离出来,并提取二值图像区域的边界坐标。随后进行特征提取,如面积、周长、圆形度等,为后续分类做好准备。使用支持向量机(SVM)等有监督学习算法对缺陷进行分类,并计算划痕的位置和大小。最后,设计了一个友好的GUI界面,使用户能够方便地加载图片、执行检测流程并查看结果。整个系统的代码结构清晰,运算速度快,具备良好的可扩展性和实用性。 适合人群:从事工业质检、计算机视觉、图像处理等相关领域的研究人员和技术人员。 使用场景及目标:适用于钢铁制造企业或其他涉及金属加工的企业,旨在提高产品质量,减少人工检测的工作量和误差。具体目标包括快速准确地识别和分类钢板表面的各类缺陷,如划痕、凹坑、裂纹等。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实践经验,如如何调整阈值以避免漏检浅划痕,以及如何优化GUI设计以提升用户体验。此外,作者强调了在实际应用中需要注意的一些细节问题,如处理反光现象和确保坐标系正确映射等。
2025-05-09 14:21:31 2.08MB
1
COMSOL 6.2 有限元仿真模型:1-3压电复合材料厚度共振模态、阻抗相位与表面位移动态分析的几何参数可调版,"COMSOL 6.2有限元仿真模型:1-3压电复合材料厚度共振模态、阻抗相位曲线及表面位移仿真的深度探索",COMSOL有限元仿真模型_1-3压电复合材料的厚度共振模态、阻抗相位曲线、表面位移仿真。 材料的几何参数可任意改变 版本为COMSOL6.2,低于此版本会打不开文件 ,COMSOL有限元仿真模型;压电复合材料;厚度共振模态;阻抗相位曲线;表面位移仿真;几何参数可变;COMSOL6.2。,COMSOL 6.2压电复合材料厚度模态与阻抗仿真的研究报告
2025-04-25 20:52:02 168KB css3
1
内容概要:本文详细介绍了如何利用COMSOL进行光子晶体超表面的透反射相位计算以及GH(古斯-汉欣)位移的模拟。首先解释了GH位移的概念及其重要性,接着逐步讲解了从建模到最终数据分析的全过程。其中包括选择合适的边界条件、正确设置网格密度、处理相位跳变等问题的具体方法。同时提供了MATLAB和Python代码用于处理相位数据并计算GH位移。文中还分享了许多实践经验,如避免常见错误、提高仿真的准确性等。 适合人群:从事光学、光子学研究的专业人士,尤其是对光子晶体超表面感兴趣的科研工作者和技术开发者。 使用场景及目标:帮助研究人员更好地理解和掌握光子晶体超表面的设计与仿真技巧,特别是在GH位移方面的应用。通过学习本文提供的方法,能够更加精确地预测和控制光束的偏折行为,从而为新型光学器件的研发提供理论依据和技术支持。 其他说明:文中不仅包含了详细的理论分析,还附带了大量的实用技巧和注意事项,有助于读者在实际工作中少走弯路,提高工作效率。此外,作者还强调了不同工具之间的协同使用,如将COMSOL与MATLAB、Python相结合,进一步提升了仿真的灵活性和便捷性。
2025-04-17 15:18:42 649KB COMSOL 光学仿真
1
说明 我们搭建了一个用于拍摄实木板表面纹理照片的自动化传输平台,配备了 OscarF810CIRF 工业相机。拍摄的照片被裁剪为200×200像素,构成模型训练和测试的数据集。为了更好地拟合我们的模型,我们随机选择了原始数据集的80%作为训练集。然后通过四种扩展方法将原始训练集扩展至原来的六倍。第一种方法,以图像横轴为对称轴,对训练集中所有图像进行上下镜像;第二种方法,以图像纵轴为对称轴,对训练集中所有图像进行左右部分镜像;第三种方法随机提取原始训练集的二分之一,并对其进行随机亮度变换;第四种方法随机抽取一半的原始训练集,对其进行随机对比变换。剩余20%的原始数据集作为模型的测试集。
2025-04-14 20:15:46 937.67MB 数据集
1
内容概要:本文详细介绍了如何利用MATLAB与CST协同工作,实现超表面阵列的自动化建模和仿真。主要内容包括:通过Excel存储编码序列并读入MATLAB进行处理,将编码序列转换为CST可识别的参数结构体,再通过MATLAB生成CST的VBS脚本,最终实现超表面阵列的快速构建。文中还讨论了相位控制、材料参数集成、单元旋转等高级应用场景,并提供了多个实用技巧和注意事项。此外,作者分享了一些优化方法,如结合遗传算法进行编码优化,以及处理大规模阵列时的性能提升措施。 适合人群:从事电磁仿真、超表面研究及相关领域的研究人员和技术人员,尤其是对提高建模效率有需求的人群。 使用场景及目标:适用于需要频繁调整超表面参数的研究项目,能够显著减少手动建模所需时间和精力,提高实验可重复性和精度。具体目标包括但不限于:快速生成复杂超表面阵列、优化相位分布、实现自动化仿真流程等。 其他说明:文中提供的代码片段和技巧不仅限于特定版本的软件,具有较强的通用性和实用性。对于初学者而言,建议逐步尝试各个步骤,确保理解和掌握整个流程。
2025-04-14 12:44:12 544KB
1