计算机视觉注释工具(CVAT) CVAT是用于计算机视觉的免费,在线,交互式视频和图像注释工具。 我们的团队正在使用它来注释数百万个具有不同属性的对象。 许多UI和UX决策都是基于专业数据注释团队的反馈。 在线尝试 。 文献资料 截屏 支持的注释格式 单击“上传注释”和“转储注释”按钮后,可以选择格式。 数据集框架允许通过其命令行工具和Python库进行其他数据集转换。 有关支持的格式的更多信息,请参阅。 注释格式 进口 出口 X X X X X X X 分割蒙版 X X X X X X X X X X X X X X X X X X X X X X X X 深度学习无服务器功能,用于自动标记 名称 类型 框架 中央处理器 显卡 互动者 OpenVINO X 探测器 OpenVINO X 探测器 OpenVINO X 探测器
2025-12-10 22:26:23 24.77MB computer-vision deep-learning annotation tensorflow
1
计算机视觉是计算机科学的一个分支,致力于使机器能够通过图像或视频理解世界。基础学习包括但不限于对图像的获取、处理、分析和理解,从而构建出能够自动执行这些任务的算法和系统。学习计算机视觉需要理解一些关键概念,如像素、图像矩阵、滤波器、边缘检测、特征提取等。 在计算机视觉的学习过程中,首先会接触到数字图像处理的基础知识,其中图像通常被表示为像素矩阵,每个像素点具有特定的灰度值或颜色值。数字图像处理包含图像增强、图像复原、彩色图像处理等技术,这些技术的核心目的是改善图像质量,提取有用的信息。 滤波是处理图像噪声和细节的常用技术之一。例如,低通滤波器可以去除图像中的高频噪声,而高通滤波器则可以强化边缘和细节。边缘检测是识别图像中物体边界的关键步骤,常见的边缘检测算法有Sobel算子、Canny边缘检测器等。 特征提取是计算机视觉中的一个高级概念,它涉及从图像中提取能够代表物体本质的特征信息。这些特征可能包括角点、边缘、纹理、颜色直方图等。特征提取在图像识别、对象跟踪、场景理解等任务中至关重要。 学习计算机视觉还离不开模式识别的知识。模式识别包括分类、聚类、回归分析等,这些技术有助于计算机视觉系统从图像中识别出模式和结构。分类是指将图像或图像特征分配到预定义类别中的过程,而聚类则是没有预定义类别的情况下,将相似的图像或特征组合在一起。 计算机视觉的学习也会涉及机器学习和深度学习的概念。通过机器学习算法,尤其是深度神经网络,计算机视觉系统可以学习大量的数据,并自动改进其性能。卷积神经网络(CNNs)在图像分类和识别任务中取得了巨大成功,是当前计算机视觉研究的热点。 此外,三维重建是计算机视觉中一个非常重要的领域,它通过分析二维图像来重建物体或场景的三维结构。这涉及到立体视觉、运动恢复结构、光流法、SLAM(同时定位与地图构建)等技术。三维重建对于机器人导航、增强现实、虚拟现实等领域具有重要意义。 计算机视觉的应用非常广泛,包括但不限于自动驾驶汽车、智能监控、医疗图像分析、工业自动化、虚拟现实等。随着技术的不断进步,计算机视觉正在逐渐融入我们生活的方方面面,成为实现人工智能不可或缺的一部分。
2025-12-07 22:27:23 62.91MB
1
《MATLAB计算机视觉与深度学习实战》是一本深入探讨如何结合MATLAB进行计算机视觉和深度学习应用的书籍。书中的实例主要围绕基于小波变换的数字水印技术展开,这是一种在图像中嵌入隐藏信息的技术,广泛应用于版权保护、数据安全等领域。小波变换是一种强大的数学工具,它能够对信号进行多尺度分析,从而在不同层次上提取信息。 在MATLAB中,实现小波变换通常使用`wavedec`函数进行分解,`waverec`函数进行重构。小波变换可以用来将图像从空间域转换到小波域,使得高频和低频信息得以分离。在数字水印的嵌入过程中,关键步骤包括选择合适的嵌入位置(通常是图像的高频部分,因为这些部分对人类视觉系统不敏感)和确定合适的嵌入强度,以确保水印的存在不会显著降低图像质量。 深度学习是近年来人工智能领域的热门话题,它主要通过构建多层神经网络模型来学习复杂的特征表示。在本书中,可能会介绍如何使用MATLAB的深度学习工具箱来构建卷积神经网络(CNN)或循环神经网络(RNN),用于图像识别、分类或者水印检测等任务。CNN特别适合处理图像数据,其卷积层能自动学习图像特征,池化层则有助于减少计算量并保持位置信息,而全连接层则负责分类或回归任务。 在MATLAB中,可以使用`alexnet`、`vgg16`等预训练模型作为基础,进行迁移学习,也可以使用`convnet`函数自定义网络结构。对于训练过程,MATLAB提供了`trainNetwork`函数,可以方便地调整超参数,如学习率、批次大小和优化器等。此外,还可以利用`activations`函数查看中间层的激活图,帮助理解模型的学习过程。 深度学习与小波变换的结合可能体现在水印的检测和恢复环节。例如,可以通过训练一个深度学习模型,使其学习如何在小波域中检测和定位水印,甚至预测水印内容。这样的模型可以对图像进行预处理,然后在小波系数中寻找水印的迹象,提高检测的准确性。 《MATLAB计算机视觉与深度学习实战》这本书将理论与实践相结合,通过实际的项目案例,帮助读者掌握如何运用MATLAB进行计算机视觉和深度学习的实验研究,特别是基于小波变换的数字水印技术。通过学习,读者不仅能理解小波变换的原理和应用,还能熟悉深度学习的基本流程,并能够利用MATLAB进行相关算法的开发和实现。
2025-12-06 20:05:57 384KB matlab 深度学习 人工智能
1
随着科技进步和人们对高品质生活的追求,无人驾驶和智能小车的发展日益受到重视。计算机视觉技术在这一领域中扮演着至关重要的角色,特别是对于小型化的智能小车来说,它能够极大地提高物流效率,并为智慧城市建设贡献力量。小型智能小车的定位导航系统是实现其核心功能的关键技术之一,但目前面临诸多挑战,包括信号失真、环境干扰等问题。本研究基于计算机视觉技术,提出了一种新型的智能小车定位导航系统,旨在解决这些问题,并推进系统的实用化和商业化。 研究内容涵盖前端数据采集、图像分析与处理、路径规划和控制等功能模块。通过应用OpenCV、卷积神经网络(CNN)、YOLO(You Only Look Once)等先进的计算机视觉技术,本研究将完成以下几个步骤: 1. 数据采集:利用摄像头收集小车当前的位置、道路类型和行驶区域等信息,这是智能小车获取环境数据的基础。 2. 图像分析与处理:通过CNN算法对采集到的图像进行分类和检测,用YOLO技术识别和预测小车前方的障碍物。这些处理对于智能小车的安全行驶至关重要。 3. 路径规划:基于图像分析结果和小车当前位置,设计自动化路径规划算法,确定最优行驶路径,确保小车能够适应复杂多变的环境。 4. 控制:将路径规划的结果转化为具体的控制指令,通过电机和相关设备控制小车的移动,完成自主行驶的任务。 预期成果是开发一套基于计算机视觉的智能小车定位导航系统的原型,并进行测试验证其实用性和可行性。成功的研发将有助于提升智能小车定位导航的精度和稳定性,解决小型化智能小车在定位导航方面的问题,促进智能小车在更多领域的应用与普及。此外,该系统还能推动智慧城市建设,提高物流效率,减少人力成本,并优化人们的交通出行体验。 此外,此项目对于提升计算机视觉技术在实际应用中的效率和准确性具有重要意义。计算机视觉技术作为人工智能的重要分支,具有广泛的应用前景。在智能小车领域之外,其技术进步同样有助于无人机、自动驾驶汽车、监控系统、工业自动化等众多领域的发展。因此,本研究不仅将对智能小车领域产生深远影响,还将对整个计算机视觉技术的应用带来积极的推动作用。随着该技术的不断成熟和优化,未来我们有理由期待智能小车在更多复杂场景中展现更出色的表现,为社会带来更多的便利和进步。
2025-11-27 10:30:43 11KB
1
yolo安全帽检测数据集是一种用于训练和测试yolo模型的数据集,旨在识别和检测图像中的安全帽行为,戴安全帽和未戴安全帽。该数据集包含了6000张以上的图像样本,这些样本涵盖了各种安全帽场景,例如室内、室外、人群中等; 戴安全帽和未戴安全帽识别数据集超高识别率,支持YOLOV5、支持YOLOV8格式的标注,近6000张以上戴安全帽和未戴安全帽场景下的安全帽图片; 文件分images和labels,images为图像,labels为标注好的txt文件,个人用labelImg手动标注,目前个人在yolov5和yolov8上跑过,mAP@0.5在0.9以上,懂行的直接下载直接用。
2025-11-27 10:14:23 900.22MB 数据集 目标检测 计算机视觉 yolo
1
本文介绍了两种基于深度学习的图像超分辨率重建算法:轻量级图像超分辨率重建网络LMDFFN和基于生成对抗网络的SRPGAN。LMDFFN通过核心轻量级特征提取块LFEB、通道和空间注意力机制以及深度可分离卷积的应用,显著降低了模型参数量和计算量,同时保持了良好的重建效果。SRPGAN则在生成模型中采用双分支残差块和半实例归一化层,判别模型使用PatchGAN,以提升局部纹理的真实性和细节。实验表明,这两种算法在定量评价和视觉质量上均表现优异,为图像超分辨率重建在资源受限设备上的应用提供了可能。 在当前的计算机视觉领域,图像超分辨率技术是一大研究热点。该技术的核心是通过算法将低分辨率图像转换为高分辨率图像,从而提高图像的清晰度和细节表现。文章所提到的两种深度学习算法,轻量级图像超分辨率重建网络LMDFFN和生成对抗网络SRPGAN,便是该领域研究的前沿成果。 LMDFFN(Lightweight Multi-scale Dilated Feature Fusion Network)是一种轻量级网络结构,它主要由轻量级特征提取块LFEB组成,该特征块通过使用深度可分离卷积等技术有效减少了模型的参数量和计算需求,同时在保持高分辨率重建效果方面也表现出色。轻量级设计让LMDFFN特别适合于资源受限的设备,如移动设备或嵌入式系统,它们对功耗和计算资源都有严格要求。 而SRPGAN(Super-Resolution Progressive Generative Adversarial Networks)则利用了生成对抗网络(GAN)的原理。SRPGAN通过构建一个生成模型,该模型包含了双分支残差块和半实例归一化层,来提升图像的局部纹理和细节效果。其对应的判别模型使用了PatchGAN,这是一种专门针对图像局部区域进行质量评估的判别器,它有助于生成模型在细节上的改进。SRPGAN在图像超分辨率的应用上展现了高水平的图像质量,特别是在提高图像局部真实感和细节丰富度方面。 这两种算法都通过定量评价和视觉质量评估获得了优异的表现,这表明它们不仅在理论上有创新,在实际应用中也具有很强的可行性和优越性。它们的成功展示了解决图像超分辨率问题的新途径,并为该领域的进一步研究和应用开辟了新的可能性。 文章中还提及,这些算法的源码是可运行的,这意味着研究人员和开发者可以使用这些源码来复现实验结果,或是将这些算法应用于自己的项目中。在实践中进一步验证算法的有效性,并对其进行改进和优化。这不仅有助于推动图像超分辨率技术的实际应用,也为学术界和工业界带来更多的研究素材和应用案例。 【深度学习 计算机视觉 图像处理】
2025-11-26 15:14:12 512KB 深度学习 计算机视觉 图像处理
1
本文介绍了如何结合双目视觉技术和YOLO目标检测算法实现3D测量。双目技术通过两个相机模拟人眼视觉,计算物体深度信息,适用于三维重建和距离测量。YOLO算法以其快速高效的特点,适用于实时目标检测。文章详细阐述了双目标定、立体校正、立体匹配和视差计算的原理及实现步骤,并提供了相关代码示例。通过将双目技术与YOLO结合,成功实现了3D目标检测和体积测量,展示了较高的精度,但也指出周围环境需避免杂物干扰。 在本文中,双目视觉技术和YOLO目标检测算法被结合起来进行3D测量。双目视觉是一种利用两个摄像机模拟人类的双眼视觉的算法,可以计算物体的深度信息,非常适合进行三维重建和距离测量。通过双目技术,我们可以从两个不同角度拍摄同一个物体,然后通过计算两个图像之间的视差(即同一物体在两个图像中的相对位置差异),来推算出物体的深度信息。这种技术在机器视觉、自动驾驶汽车、机器人导航等领域有着广泛的应用。 YOLO(You Only Look Once)是一种实时的目标检测算法。它的特点是速度快,效率高,能够实时地在图像中检测和定位多个物体。YOLO将目标检测问题视为一个回归问题,将图像划分为一个个格子,每个格子预测中心点落在该格子内的边界框和类别概率。这种方法极大地提高了目标检测的效率。 文章详细介绍了如何将双目视觉技术和YOLO算法结合起来进行3D测量。需要进行双目标定,即确定两个相机的内部参数和外部参数。然后进行立体校正,使得两个相机的成像平面共面,并且两个相机的主光轴平行。接着进行立体匹配,找到左图和右图之间的对应点。最后进行视差计算,计算出对应点在两个图像中的相对位置差异,即视差。通过视差和双目标定的结果,可以计算出物体的深度信息,从而实现3D测量。 文章还提供了相关的代码示例,帮助读者更好地理解和实现双目视觉和YOLO的3D测量。通过实际的案例,我们可以看到,将双目视觉技术和YOLO结合起来,可以成功实现3D目标检测和体积测量,展示了较高的精度。但是,这种方法也有其局限性,比如周围的环境需要尽量避免杂物干扰,否则可能会影响测量的精度。 双目视觉技术和YOLO目标检测算法的结合,为3D测量提供了一种新的方法。这种技术具有速度快、精度高的特点,可以在许多领域得到应用。但是,如何提高测量的精度,避免周围环境的干扰,还需要进一步的研究和改进。
2025-11-25 15:42:45 75KB 计算机视觉 3D测量 目标检测
1
计算机视觉是一门研究如何让计算机理解和解释图像信息的学科。它的发展历史悠久,从最初的三视图模型,到20世纪90年代机器学习的引入,以及最近深度学习在计算机视觉领域的突破性进展。计算机视觉的技术应用已经渗透到各个行业,包括安防、游戏娱乐、交通、医疗等领域。 计算机视觉的早期发展阶段,主要关注图像内容的建模,例如三视图建模和立体视觉。20世纪70年代,图像处理开始受到重视,而到了20世纪80年代,机器学习开始成为计算机视觉中的一个重要工具,尤其是在识别、检测和分类等应用中。1963年,美国计算机科学家拉里·罗伯茨在麻省理工大学的博士毕业论文中提出主动视觉理论和定性视觉理论,这标志着计算机视觉开始进入快速发展阶段。 进入21世纪,深度学习为计算机视觉带来了革命性的变化。2012年,Hinton的小组在ImageNet竞赛中提出了卷积神经网络AlexNet,并取得了显著的性能提升。自此之后,基于深度学习的检测与识别、图像分割以及立体视觉等技术得到了迅速发展。 GPU(图形处理器)与并行技术在计算机视觉中的应用也为计算性能带来了巨大提升。从20世纪80年代的专门运算单元到1999年NVIDIA发布GeForce 256,GPU的定义被正式提出。2000年开始尝试使用GPU加速通用计算任务,2001年GPGPU概念的提出,以及2006年CUDA的推出,这些技术的不断进步使得GPU逐渐成为深度学习训练中的标配。 基于卷积神经网络的计算机视觉应用涵盖了图像搜索、图像分类、图像分割、物体检测、人脸识别、图像描述以及生成对抗网络。深度学习模型在此基础上不断发展,极大提升了计算机视觉在各领域的实际应用效能。 全书章节涵盖了从基础的视觉色彩原理到神经网络模型,再到卷积模型与具体应用的知识。全书共分为八个章节,详细介绍了计算机视觉的基础知识与深入技术。 计算机视觉的发展历程表明,尽管让计算机像人类一样理解和解释图像仍是一个挑战,但随着深度学习和并行计算技术的不断进步,这一领域的技术正飞速发展,应用范围不断拓展,已经成为计算机科学中一个极为重要和活跃的分支。
2025-11-24 18:47:28 26.55MB
1
内容概要:本文档为《2025三届人工智能工程技术赛项-样题》,涵盖自然语言处理、计算机视觉和综合工程技术三大模块的竞赛任务。参赛者需在指定.ipynb文件中完成代码编写,涉及新闻文本分类、对抗样本评测与模型加固、非均衡图像分类、目标检测(DETR模型)、开放词汇检测等任务,重点考察数据预处理、模型构建、训练优化、结果可视化及评估能力。要求选手掌握PyTorch、Transformer、ResNet、DETR、CLIP、SAM等框架与模型的应用,并完成相应代码实现与结果截图提交。 适合人群:具备一定人工智能基础,熟悉深度学习框架(如PyTorch)和常用模型(如CNN、Transformer)的高校学生或从业人员,具备1年以上AI开发经验者更佳;适合备战技能竞赛的技术人员。 使用场景及目标:①用于全国技能大赛人工智能赛项的备赛训练;②提升在NLP、CV及多模态任务中的工程实现能力;③掌握对抗样本防御、非均衡分类、目标检测优化、开放词汇检测等前沿技术的实际应用;④熟悉从数据处理到模型部署的全流程开发规范。; 阅读建议:建议结合实际代码环境边运行边学习,重点关注各模块中需补全的关键代码逻辑(如标签平滑、mixup增强、GIoU计算、匈牙利匹配、KL蒸馏等),并严格按照任务要求保存输出结果与模型文件,确保符合评分规范。
1
在本篇计算机视觉实验报告中,学生王培钰主要任务是使用CImg库重写和封装Canny边缘检测算法,并对算法进行优化。Canny算法是计算机视觉领域中一种经典的边缘检测方法,它通过一系列步骤有效地提取图像中的边缘。以下是实验报告中涉及的关键知识点和实现过程的详细解释: 1. **Canny边缘检测算法**:Canny算法包含以下步骤: - **灰度化**:将彩色图像转换为灰度图像,通过红、绿、蓝分量的加权平均完成。 - **高斯滤波**:使用高斯滤波器平滑图像,消除高频噪声,但保留边缘信息。这里使用了`gaussian_smooth()`函数,并通过`make_gaussian_kernel()`生成高斯核。 - **计算梯度**:通过计算一阶偏导数求得图像的梯度幅值和方向。这涉及到`derrivative_x_y()`函数,以及`angle_radians()`和`radian_direction()`来确定方向。 - **非极大值抑制**:通过比较当前像素点与其邻域内像素点的梯度值,抑制非边缘像素,以减少假阳性边缘。`non_max_supp()`函数实现此操作。 - **双阈值检测**:使用高低两个阈值确定边缘,低阈值用于连接边缘,高阈值用于去除噪声。`apply_hysteresis()`函数处理这一过程。 - **边缘连接与删除**:通过`canny_line()`函数将相邻边缘连成长线,`delete_line()`函数删除长度小于20的短线条。 2. **CImg库的使用**:CImg是一个开源的C++图像处理库,实验要求只使用CImg进行图像的读取、写入和处理。通过封装,确保了代码的简洁性和可读性。 3. **代码封装**:每个功能都封装为单独的函数,如`RGBtoGray()`、`gaussian_smooth()`等,便于代码复用和维护。 4. **参数测试与分析**:对不同参数(如高斯滤波的σ值、双阈值)进行测试,观察其对边缘检测结果的影响。这有助于理解算法的敏感性和适应性。 5. **测试与调试**:通过对每一步的结果进行可视化和数量统计(如边缘像素点的数量),验证算法的正确性和效果。例如,通过比较经过连线和删线处理后的像素点数量变化。 实验过程中,学生按照学号尾号的规则分配了需要改写的代码(Code0),并成功实现了Canny算法的各个步骤,包括图像预处理、边缘检测和后处理。测试表明,经过优化的Canny算法能够有效检测图像边缘,并能根据设定的参数调整边缘的精确度和连通性。这种实践加深了对Canny边缘检测算法的理解,并提高了编程能力。
2025-11-24 09:46:41 2.15MB 计算机视觉
1