DFT的matlab源代码时间序列数学库 概述 该库的目的是为时序分析和信号处理提供优化的算法。 特征 筛选条件: 移动平均滤波器 指数移动平均滤波器 规范化器: Z归一化 最小-最大归一化 表示形式: 不可逆的 TESPAR DZ 矩阵配置文件 完全加入 自我加入:STOMP,STAMP,SCRIMP 逐段地 分段总逼近(PAA) 分段线性聚合近似(PLAA) 自适应分段常数逼近(APCA) 具有线性(PLA),二次(PQA)或其他类型曲线拟合功能的分段曲线拟合逼近 象征性的 符号聚合近似(SAX) 可索引符号聚集近似(iSAX) 光谱 离散傅立叶变换(DFT) 离散余弦变换(DCT) 离散切比雪夫变换(DChT) 小波离散Haar小波变换(DWT) 测量: 动态时间规整(DTW) 最长公共子序列(LCSS) 在实际序列上编辑距离(EDR) 使用实际罚分(ERP)编辑距离 均匀缩放 缩放和扭曲匹配(在统一缩放中使用DTW) 其他 用于(自适应SAX / iSAX)的自适应分布分配器 复杂度不变距离 用法 将以下依赖项添加到您的Maven项目中。 < dependency > < gr
2022-12-01 11:42:02 4.26MB 系统开源
1
这是 “LSTM时间序列预测任务” 案例中使用到的数据集,该案例我已在Blog中分享,欢迎下载该数据集。
1
tsmoothie 一个用于以向量化方式进行时间序列平滑和离群值检测的python库。 总览 tsmoothie以快速有效的方式计算单个或多个时间序列的平滑度。 可用的平滑技术是: 指数平滑 具有各种窗口类型(常量,汉宁,汉明,巴特利特,布莱克曼)的卷积平滑 使用傅立叶变换进行频谱平滑 多项式平滑 各种样条平滑(线性,三次,自然三次) 高斯平滑 Binner平滑 低价 各种季节性分解平滑(卷积,最低,自然三次样条) 带有可自定义组件(水平,趋势,季节性,长期季节性)的卡尔曼平滑 tsmoothie提供了平滑处理结果的间隔计算。 这对于识别时间序列中的异常值和异常可能很有用。 关于使用的平滑方法,可用的间隔类型为: sigma间隔 置信区间 预测间隔 卡尔曼区间 tsmoothie可以执行滑动平滑方法来模拟在线使用。 可以将时间序列分成相等大小的片段,并分别进行平滑处理。 与往常一样,此功能通过WindowWrapper类以矢量化方式实现。 tsmoothie可以通过BootstrappingWrapper类操作时序引导程序。 支持的引导程序算法为: 没有重叠的块引导
2022-11-20 23:23:57 1.23MB bootstrap timeseries time-series smoothing
1
电力需求预测:机器学习模型预测Sunyani和Nationwide的未来电力需求
2022-11-15 20:59:05 23.39MB python time-series scikit-learn data-analytics
1
cnn-bilstm-attention-time-series-prediction_keras-master
2022-10-30 18:02:39 498KB cnn keras 文档资料 python
1
《Neural Networks for Time Series Forecasting with R》,2017年新出书籍,深度学习用于时间序列
2022-10-16 10:18:38 1.52MB R Neural Networks
1
非线性时间序列分析nonlinear time series anlysis英文版
2022-10-15 10:11:04 5.43MB nonlinear ti
1
非线性时间序列分析 Nonlinear time series analysis Holger Kantz,Max Planck Institute for Physics of Complex Systems, Dresden Thomas Schreiber,Physics Department ,University of Wuppertal
2022-10-15 10:07:09 2.72MB 非线性时间序列分析
1
R语言时间序列模型的实现 斯普林格pdf高清版本
2022-09-23 22:01:03 4.2MB r_language springer time_series 时间序列
图灵原版数学统计学系列02 时间序列分析 预测与控制 Time Series Analysis -- Forecasting and Control, 3rd Edition
2022-09-10 17:19:27 3.1MB math
1