提示没有tools/hprof-conv.exe的可以下载复制到sdk的tools文件夹下,然后再重启eclipse。
2022-02-28 15:27:27 41KB hprof-conv
1
Kaggle语音识别 这是针对的Kaggle竞赛的项目,目的是为简单的语音命令构建语音检测器。 该模型是使用连接器时间分类(CTC)成本的卷积残差,向后LSTM网络,由TensorFlow编写。 首先将音频波文件转换为滤波器组频谱图。 CNN层从频谱图输入中提取分层特征,而LSTM层的作用类似于编码器/解码器,对CNN特征的序列进行编码,并输出字符作为输出。 LSTM编码器/解码器非常动态。 取决于训练词汇,可以用整个单词,音节或仅音素的信息对发出的字符进行编码。 完全连接的层会压缩表示形式,并进一步将字符与单词解耦。 该项目旨在调试和可视化友好。 提供这些界面以权重和激活,登录TensorBoard并记录示例单词的学习,这些示例单词显示了如何在训练中学习角色和决策边界。 安装和使用: 先决条件:Python 3.5,TensorFlow 1.4; 或Python 3.6,Tens
2022-01-06 13:45:16 1.93MB tensorflow kaggle lstm speech-recognition
1
在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律。 1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解: Computes a 1-D convolution given 3-D input and filter tensors. Given an input tensor of shape [batch, in_width, in_channels] if data_format is “NHWC”, or [b
2022-01-02 21:24:25 64KB c conv ens
1
arc_conv_r54,用于游戏解包,兼容性相对较好
2021-12-18 21:25:50 496KB 解包器
1
1 Faster-RCNN (1)输入测试图像; (2)将整张图片输入CNN,进行特征提取; (3)用RPN生成建议窗口(proposals),每张图片生成300个建议窗口; (4)把建议窗口映射到CNN的最后一层卷积feature map上; (5)通过RoI pooling层使每个RoI生成固定尺寸的feature map; (6)利用Softmax Loss(探测分类概率) 和Smooth L1 Loss(探测边框回归)对分类概率和边框回归(Bounding box regression)联合训练. 1.1 Conv layers 包含了conv,pooling,relu三种层 1.1
2021-12-16 18:53:43 336KB AS conv st
1
matlab精度检验代码转化神经网络 卷积峰神经网络(SNN)用于时空特征提取 本文重点介绍了卷积增强神经网络的潜力,并介绍了一种新的体系结构来解决训练深层卷积SNN问题的问题。 先决条件 以下安装程序已经过测试,并且可以正常运行: 的Python> = 3.5 火炬> = 0.4.1 CUDA> = 9.0 opencv> = 3.4.2 码头工人 设置所有程序都可以运行的环境运行./run.sh 资料准备 下载CIFAR10-DVS数据集 提取DVS-CIFAR10 / dvs-cifar10文件夹下的数据集 在Matlab中使用test_dvs.m将事件转换为t, x, y, p矩阵(请确保在代码内调整test_dvs.m文件夹地址) 运行python3 dvscifar_dataloader.py准备数据集(确保在main.py目录中有dvs-cifar10 / airplane / 0.mat这样的文件) 培训与测试 CIFAR10-DVS模型 运行python3 main.py 时空特征提取测试 对于每种架构,只需使用python3运行主文件 注意:训练SNN时存在一些问题
2021-12-15 15:29:08 67KB 系统开源
1
2017年底,Tensorflow 推出Lite版本,可实现移动端的快速运行,其中,一个很关键的问题,如何把现有分类模型(.pb) 转换为(.lite)模型呢? 其实,步骤如下 1- 进入 Tensorflow 源码文件夹(以便bazel可以无需配置找打相应路径) 2- 转换可执行文件 bazel run --config=opt \ //tensorflow/contrib/lite/toco:toco -- \ --input_file=/tmp/mobilenet_v1_1.0_224_frozen.pb \ # 待转换模型路径 --output_file=/tmp/tflit
2021-12-09 09:15:50 42KB c conv convert
1
pytorch之卷积神经网络nn.conv2d 卷积网络最基本的是卷积层,使用使用Pytorch中的nn.Conv2d类来实现二维卷积层,主要关注以下几个构造函数参数: nn.Conv2d(self, in_channels, out_channels, kernel_size, stride, padding,bias=True)) 参数: in_channel: 输入数据的通道数; out_channel: 输出数据的通道数,这个根据模型调整; kennel_size: 卷积核大小;kennel_size=3,表示卷积大小(3,3), kennel_size=(3,5),表示卷积大小为非正
2021-11-30 22:24:59 29KB c conv nv
1
csresnext50-panet-spp.conv.112.rar (130M) csresnext50-panet-spp.cfg csresnext50-panet-spp.conv.112 csresnext50-panet-spp-original-optimal.cfg for yolov3 2020 new CSP train pretrain model AlexeyAB/darknet detail in:https://github.com/AlexeyAB/darknet
2021-11-25 17:05:31 133.83MB csresnext50 yolo3 2020 AlexeyAB/darknet
1
yolov3(pytorch)训练自己的数据集可参看本人blog。要使用的预训练权重:首先下载训练好的网络参数yolov3-tiny.weights,到weights目录下,但仍然需要fine-tune,so对yolov3-tiny.weights进行改造,下载darknet相关文件,下载好之后进入文件make一下,生成darknet可执行文件,在当前文件目录下运行: ./darknet partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15 即可得到该文件yolov3-tiny.conv.15
2021-11-25 16:16:23 27.39MB yolov3 pytorch
1