包含3440张cfcf穿越火线角色图片,已标注为YOLO txt格式,已划分为训练集、验证集和测试集,拿到手即可直接开始训练。可用于YOLO目标检测模型训练,机器学习,深度学习,人工智能,python,pycharm。
2025-04-19 07:44:10 191.83MB 数据集 YOLO Python 目标检测
1
内容概要:本文详细介绍了使用海康威视工业相机和YOLOv5进行目标检测的完整解决方案。首先,文章阐述了系统的整体架构,包括海康相机SDK用于图像采集,YOLOv5模型通过LibTorch在C++中进行推理,并将整个流程封装成DLL供上位机调用。接着,文中深入探讨了图像采集过程中需要注意的细节,如回调函数处理、触发模式配置以及BGR到RGB的格式转换。对于推理部分,则强调了DLL接口的设计、内存管理和性能优化措施,如双缓冲队列、GPU加速预处理和共享内存的使用。此外,还讨论了不同平台上(如MFC、Qt、LabVIEW)的具体调用方式及其注意事项。最后,针对常见的部署问题提供了具体的解决方案,如电磁干扰导致的相机断连、模型误检和内存泄漏等问题。 适合人群:从事工业视觉系统开发的技术人员,尤其是有一定C++编程基础并熟悉深度学习框架的研究者。 使用场景及目标:适用于需要在工业环境中实施高效、稳定的目标检测任务的企业和个人开发者。通过本方案,可以在保持高精度的同时提高处理速度,降低延迟,确保系统的可靠性和鲁棒性。 其他说明:文中不仅提供了详细的代码示例和技术细节,还分享了许多实践经验,帮助读者更好地理解和应用这套方案。同时,作者也指出了一些潜在的风险点和应对策略,使读者能够更加从容地面对实际项目中的挑战。
2025-04-18 10:59:34 184KB
1
SSD(Single Shot MultiBox Detector)是一种流行的目标检测框架,它以其速度快和性能好而闻名。SSD通过单次前向传播即可预测图像中的目标位置和类别。以下是SSD模型的详细介绍: 1. SSD概述 SSD是由Wei Liu等人在2015年提出的,其核心思想是在不同尺度的特征图上进行目标检测。SSD利用了深度卷积网络(如VGGNet)提取的多尺度特征来进行目标检测,这使得它能够有效地检测不同尺寸的目标。 2. SSD的关键特性 多尺度特征图:SSD在网络的不同层级上使用特征图,这样可以捕捉到不同大小的目标。 先验框(Prior Boxes):在每个特征图的每个位置,SSD会生成多个不同尺寸和宽高比的先验框,这些框用于预测目标的存在及其位置。 单次传播:与需要多次迭代计算的检测方法不同,SSD只需要网络的单次前向传播即可完成检测。 边框回归和分类:SSD同时预测每个先验框的类别和边界框位置,使用不同的卷积层来预测类别得分和边界框偏移。 3. SSD的网络结构 SSD的网络结构通常基于一个强大的图像分类网络,如VGGNet。在SSD中
2025-04-17 12:10:18 163.08MB pytorch pytorch 目标检测
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2025-04-16 14:28:36 2.31MB 人工智能 ai python
1
根据文档步骤可以学会自己训练目标检测模型,以及使用
2025-04-16 11:20:40 283.3MB 目标检测
1
数据量:110个样本 标注文件格式:xml 解析脚本地址:https://gitcode.com/DataBall/DataBall-detections-100s/overview 运行方式: 设置脚本数据路径 path_data 运行脚本:python demo.py 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501 在深度学习和计算机视觉领域中,目标检测技术是实现图像内容理解和分析的核心技术之一,其主要功能是识别图像中特定物体的位置,并进行类别标注。鲨鱼检测作为目标检测应用中的一个专项领域,对海洋保护、生态监控和安全预警等领域具有重要意义。为了支持这一领域研究的发展,"数据集-目标检测系列-鲨鱼检测数据集 shark-DataBall"应运而生。 该数据集包含110个样本,每个样本都由人工精确标注,标注文件格式为xml,这种格式广泛应用于目标检测的标注工作,因为它能够详细记录物体的位置信息(包括边界框的坐标)和类别信息。数据集的标注质量直接影响到机器学习模型的训练效果和检测准确性,因此,高质量的数据标注是目标检测任务取得成功的关键。 为了更好地使用这份数据集,开发者提供了相应的解析脚本,并托管在指定的gitcode仓库地址。开发者鼓励使用者设置好数据路径后,运行提供的demo.py脚本来加载数据集,并进行后续的模型训练与评估。这样的一站式解决方案大大降低了研究者和开发者入门的难度,使得非专业人士也能够尝试使用这份数据集进行鲨鱼检测研究。 此外,值得注意的是,这份数据集的更新信息主要通过指定的CSDN博客进行发布。CSDN是中国最大的IT社区和服务平台,这里的信息更新能够确保研究者及时获得数据集的最新版本和相关进展,从而保证其研究工作始终处于前沿。 从应用的角度来看,鲨鱼检测数据集shark-DataBall的出现,不仅能够促进相关领域的技术进步,还能够在实际应用中发挥重要作用。例如,在海洋生物研究领域,通过对鲨鱼的精确识别和数量统计,研究人员能够更好地掌握鲨鱼的活动规律和栖息地变化;在旅游安全领域,鲨鱼检测技术可以被用于海滩安全预警系统,及时发现并警告游客鲨鱼的存在,减少事故发生的可能;此外,对于航海运输行业,鲨鱼检测技术的应用可以提前发现鲨鱼,避免因鲨鱼袭击而导致的航海事故。 数据集的标签包括"数据集"、"目标检测"、"鲨鱼检测"、"python"和"人工智能"。这些标签准确地概括了数据集的核心内容和应用场景。其中"数据集"和"目标检测"代表了这份材料的基本性质和研究范围;"鲨鱼检测"体现了这份数据集的专业性和针对性;"python"强调了在数据集操作和机器学习模型开发过程中所采用的主要编程语言;而"人工智能"则是目标检测技术所属的高阶领域,揭示了鲨鱼检测技术在智能分析和决策支持中的潜在应用。 在机器学习和深度学习框架中,python语言因其简洁易学和丰富的库支持而受到广泛青睐。在目标检测领域,有多个成熟的框架可供选择,如TensorFlow、PyTorch等,它们提供了从数据预处理、模型构建到训练和部署的全套工具和接口。而结合这份数据集,研究者可以使用这些工具进行鲨鱼检测模型的开发和优化。 "数据集-目标检测系列-鲨鱼检测数据集 shark-DataBall"的推出,为鲨鱼检测领域的研究和应用提供了宝贵的数据资源和便捷的使用方式。随着人工智能技术的不断进步,我们有理由相信,这份数据集将在未来的发展中扮演更加重要的角色。
2025-04-14 19:40:12 2.91MB 数据集 目标检测 python 人工智能
1
基于YOLOv8与DEEPSort技术的多目标检测跟踪系统:包含56组visdrone测试视频、pyqt5界面设计与详细环境部署及算法原理介绍,基于YOLOv8和DEEPSort的多目标检测跟踪系统:深入探索环境部署与算法原理,附带56组visdrone测试视频的界面设计实战教程。,五、基于YOLOv8和DEEPSort的多目标检测跟踪系统 1.带56组测试视频,使用visdrone数据集。 2.pyqt5设计的界面。 3.提供详细的环境部署说明和算法原理介绍。 ,基于YOLOv8;DEEPSort多目标检测跟踪系统;56组测试视频;visdrone数据集;pyqt5界面设计;环境部署说明;算法原理介绍,基于YOLOv8和DEEPSort的56组视频多目标检测跟踪系统
2025-04-13 14:25:06 3.27MB
1
安全帽检测数据集是针对工业安全领域的一个重要资源,它主要包含了5000张PNG格式的图片,这些图片经过精心处理,具有416×416像素的分辨率,适用于深度学习中的目标检测任务。这个数据集特别设计用于YOLO(You Only Look Once)算法,这是一种高效且实时的目标检测框架。 YOLO是一种基于深度学习的一阶段目标检测方法,由Joseph Redmon等人在2016年提出。它的核心思想是在单个神经网络中同时进行类别预测和边界框定位,这使得YOLO在速度和精度之间取得了良好的平衡。对于工业安全场景,如建筑工地或矿山,确保工人佩戴安全帽至关重要。因此,利用这样的数据集训练YOLO模型,可以实现自动检测工人是否正确佩戴安全帽,从而提高工作场所的安全性。 数据集的组织结构通常包括训练集和测试集。训练集用于训练模型,而测试集则用来评估模型在未见过的数据上的性能。在这个案例中,这5000张图像可能已经被划分成这两个部分,以确保模型在训练过程中的泛化能力。"images"文件夹可能包含了所有图片,而"labels"文件夹则可能存储了对应的标注信息,每张图片的标注通常是一个文本文件,列出了图片中安全帽的位置(以边界框的形式表示)和类别信息。 在训练过程中,首先需要将这些PNG图像加载到YOLO模型中,通过反向传播优化模型参数,以最小化预测边界框与实际边界框之间的差距。数据增强技术,如随机翻转、缩放和旋转,常被用来扩充数据集,防止过拟合。训练完成后,模型会在测试集上进行验证,评估指标通常包括平均精度(mAP)、召回率和精确率等。 在深度学习模型训练中,选择合适的损失函数也很关键。对于YOLO,通常使用多边形 IoU(Intersection over Union)损失函数来衡量预测框和真实框的重叠程度。此外,还要考虑分类错误,这可能涉及二元交叉熵损失。 为了部署这个模型,我们需要将其转化为能够在实际环境中运行的轻量级版本,比如YOLOv3-tiny或者更小的模型架构。这可以通过模型剪枝、量化和蒸馏等技术实现。将模型集成到移动设备或监控系统中,可以实时监测工人是否佩戴安全帽,一旦发现违规行为,立即报警或记录,从而提升安全管理水平。 总结来说,这个安全帽检测数据集为开发一个高效、实时的安全帽检测系统提供了基础。通过使用YOLO框架,结合数据预处理、训练、验证和优化过程,我们可以构建出一个强大的目标检测模型,有效保障工人的生命安全。
2025-04-12 15:51:15 320.8MB yolo 目标检测 深度学习 数据集
1
基于深度学习的YOLOv安全帽佩戴实时检测与目标追踪,可视化界面展示,yolov安全帽佩戴检测,目标检测,附带可视化界面。 ,核心关键词:yolov安全帽佩戴检测; 目标检测; 可视化界面。,"YoloV安全帽佩戴智能检测系统:目标检测与可视化界面" 深度学习技术近年来在目标检测领域取得了显著的进步,特别是在特定场景下的应用,如安全帽佩戴检测。YOLOv(You Only Look Once version)是一种流行的实时目标检测算法,其快速性和准确性在多种实际场景中得到了验证。本文档聚焦于基于YOLOv的安全帽佩戴实时检测技术,该技术不仅能够实现对佩戴安全帽的工人的实时监控,还能够对检测结果进行可视化展示,从而提高作业现场的安全管理水平。 YOLOv算法通过将目标检测任务转化为一个单一的回归问题,极大地提升了检测速度,使其适用于对实时性要求较高的场景。安全帽佩戴检测利用YOLOv算法,通过训练特定的数据集,使其能够识别出是否佩戴了安全帽,这在施工、矿场等高风险作业环境中尤为重要。通过实时监测,系统能够在第一时间内发现未正确佩戴安全帽的工人,从而及时提醒或采取措施,预防事故的发生。 可视化界面作为该系统的重要组成部分,提供了直观的操作和查看方式。它不仅能够实时展示检测结果,还可以通过图表、视频等形式,让用户更直观地了解现场工人的安全状况。在实际应用中,可视化界面的设计要考虑到易用性、实时性和准确性,确保信息传达的有效性。 文档中提到的“剪枝”技术在深度学习模型优化中扮演着重要角色。剪枝是一种模型压缩技术,目的是去除神经网络中不必要的参数或层,以此减少模型的大小和计算复杂度,同时尽量保留模型的性能。在安全帽佩戴检测系统中,使用剪枝技术可以使得模型更加轻量化,提高运行速度,减少资源消耗,从而更适用于硬件资源有限的现场环境。 此外,文档中还包含了一系列的文件名称,这些文件可能是文章、说明文档或相关的数据资料。其中“近年来随着人工智能技术的飞速发展目标检测已成.doc”和“安全帽佩戴检测是一种基于目标检测算法的技.doc”可能是对技术背景和方法的介绍;而“文章标题基于的安全帽佩戴检测实现目标检测与可视化.html”和“安全帽佩戴检测目标检测附带可视化界面.html”则可能是对系统功能和界面设计的说明。 安全帽佩戴检测系统的开发和应用,对于提升工作场所的安全监管有着重要意义。通过利用先进的深度学习技术和高效的模型优化方法,可以构建出既准确又高效的智能安全监控系统,为安全生产提供强有力的技术支持。未来,随着技术的不断进步和算法的优化,这类系统有望在更多行业和领域得到广泛应用,进一步提高人类生产活动的安全水平。
2025-04-12 10:29:24 1.22MB
1
YOLOv8-obb旋转框目标检测技术结合了YOLO(You Only Look Once)模型和旋转边界框(Oriented Bounding Box, OBB)检测算法,是一种用于图像中物体检测的先进方法。它能够识别和定位图像中的目标,并为每个目标绘制一个旋转的边界框,以此来更准确地描述目标在图像中的位置和姿态。 在本项目中,开发者提供了基于YOLOv8架构的旋转框目标检测模型,并通过ONNX Runtime实现高效部署。ONNX Runtime是微软开发的一个跨平台机器学习运行时引擎,支持ONNX(Open Neural Network Exchange)模型格式,它能够加速AI模型在不同平台上的部署和推理过程。 项目提供的完整代码包含了模型转换、加载以及推理的全部步骤。通过指定的转换工具将训练好的YOLOv8-obb模型导出为ONNX格式,这一步是必要的,因为ONNX Runtime需要ONNX格式的模型来进行推理。然后,在代码中加载这个转换后的模型,初始化推理环境,并对输入图像进行预处理。 推理阶段,输入图像经过预处理后送入模型中,模型输出包括目标的类别标签、旋转边界框的坐标和相应的置信度分数。这些输出数据后续需要经过后处理步骤来过滤掉低置信度的检测结果,并将旋转框转换为可视化的格式,以便在图像上绘制出精确的目标位置。 整个过程利用了ONNX Runtime优秀的性能,使得目标检测的实时性得到了提升。这对于需要实时处理视频流的场景(如自动驾驶、安防监控等)尤为关键。此外,代码可能还包含了一些优化策略,例如模型量化、加速库的使用等,这些都是提高性能的有效手段。 值得注意的是,虽然YOLOv8-obb结合了旋转框检测技术,但在实际部署时仍然需要注意模型的准确性和鲁棒性,特别是在面对图像中的遮挡、光照变化以及目标变形等复杂情况时。 代码的具体实现细节包括模型转换的参数设置、图像预处理的方法、推理过程中的内存和计算资源管理、结果的后处理和可视化等。开发者需要针对具体的应用场景进行调优,以达到最佳的检测效果和性能平衡。 此外,代码库可能还包括了示例脚本,以便用户可以快速理解和上手,这些示例可能涵盖了模型的基本使用、特定场景下的定制化修改以及与其他系统集成的方法等。 为了确保项目的顺利实施,可能还包括了依赖项的管理,比如指定ONNX Runtime的版本、其他相关深度学习库的版本等,确保环境的一致性和代码的可复现性。 这个项目为开发者提供了一个能够快速部署和应用YOLOv8-obb旋转框目标检测模型的完整方案,适用于各种需要高效准确目标检测的场合。通过这种方式,开发者能够节省部署时间,集中精力在模型的优化和业务逻辑的开发上。
2025-04-11 17:04:06 8KB yolo onnxruntime
1