用Python代码实现了一个GBDT类,训练和预测数据,给出了运行示例。代码解释说明的博客地址:https://blog.csdn.net/u013172930/article/details/143473024 梯度提升决策树(Gradient Boosting Decision Tree,简称GBDT)是一种基于集成学习的机器学习算法,它通过迭代地添加新的树来改进整体模型。GBDT的核心思想是通过不断学习前一个树的残差来构建新的树,以此来修正前一个树的预测误差。在每次迭代中,GBDT都会生成一棵新的决策树,然后将新的决策树与现有的模型集成在一起,以优化目标函数。这种算法特别适合处理回归问题,同时在分类问题上也有不错的表现。 Python作为一门高级编程语言,因其简洁性和强大的库支持,在数据科学领域得到了广泛的应用。在Python中实现GBDT算法,通常需要借助一些专门的机器学习库,例如scikit-learn。然而,在给定的文件中,我们有一个从头开始编写的GBDT类实现,这意味着它可能不依赖于任何外部的库,而是直接用Python的原生功能来完成算法的实现。 文件列表中的"gbdt.ipynb"可能是一个Jupyter Notebook文件,这是一个交互式编程环境,非常适合进行数据科学实验。该文件很可能是对GBDT算法实现的解释和使用说明,其中可能包含了详细的代码注释和运行示例。"cart.py"文件名暗示了它可能是实现分类与回归树(CART)算法的Python脚本。CART是一种决策树算法,可以用于生成GBDT中的单棵树。"utils.py"文件通常包含一些辅助功能或通用工具函数,这些可能是为了支持GBDT类的运行或者在实现过程中使用的通用功能。 这个压缩包文件包含了用Python从零开始实现GBDT算法的完整过程。它不仅提供了GBDT算法的代码实现,还可能包括了如何使用该算法进行训练和预测的示例,以及相关的辅助代码和工具函数。通过这样的实现,用户可以更深入地理解GBDT的工作原理,而不仅仅是作为一个“黑盒”使用现成的机器学习库。
2025-05-08 17:43:11 5KB python boosting GBDT 梯度提升决策树
1
内容概要:本文详细介绍了三相PWM整流器双闭环控制系统的实现方法及其动态和稳态特性分析。首先阐述了电压外环和电流内环的工作原理,特别是电流环中的PI控制器实现,强调了积分限幅的重要性。接着讨论了SVPWM调制的具体实现步骤,包括扇区判断和矢量作用时间计算,并指出了一些常见的陷阱如过调制处理。此外,文章还探讨了锁相环(PLL)的实现,提出了增强型PLL的设计思路以及调试技巧。最后,作者分享了多个实际项目的调试经验和注意事项,如死区时间和参数整定。 适合人群:从事电力电子研究和开发的技术人员,尤其是对PWM整流器感兴趣的工程师。 使用场景及目标:适用于希望深入了解并掌握三相PWM整流器双闭环控制系统的开发者,帮助他们更好地理解和实现相关算法,提高系统的稳定性和效率。 其他说明:文中提供了大量代码片段和实践经验,建议读者结合理论书籍和实际硬件进行验证和调整。同时,附上了几本推荐的参考书籍,以便进一步学习。
2025-05-07 18:32:03 545KB 电力电子 锁相环 PI控制器
1
《强化学习第二版》是Richard S. Sutton撰写的一本经典著作,深入浅出地介绍了强化学习的基本概念、算法和应用。Matlab作为一种强大的数学计算和建模工具,被广泛用于实现强化学习算法。这个压缩包文件包含了书中各章节的Matlab代码实现,对于理解和实践强化学习具有很高的参考价值。 强化学习是一种机器学习方法,它通过与环境的交互来学习最优策略,以最大化长期奖励。这种学习方式模仿了人类和动物的学习过程,即通过试错来改进行为。Sutton的书中涵盖了Q-learning、SARSA、策略梯度、动态规划等核心算法。 1. Q-learning:这是无模型的强化学习算法,通过更新Q表来估计每个状态-动作对的长期奖励。在Matlab实现中,会涉及到表格存储、迭代更新以及ε-greedy策略,以平衡探索与利用。 2. SARSA:State-Action-Reward-State-Action,是另一个无模型的强化学习算法,它在线地更新策略,确保当前选择的动作基于最新观察到的奖励。Matlab代码将展示如何根据当前状态和动作更新策略。 3. 策略梯度:这种方法直接优化策略参数,例如神经网络的权重,以最大化期望回报。在Matlab中,这可能涉及神经网络的构建、反向传播和梯度上升更新。 4. 动态规划:包括价值迭代和策略迭代,这些是基于模型的强化学习算法,适用于环境模型已知的情况。Matlab实现将展示如何进行贝尔曼最优方程的迭代求解。 压缩包中的“kwan1118”可能是一个包含多个子文件的目录,这些子文件对应于书中各个章节的Matlab脚本。每个脚本可能包括环境模拟、算法实现、结果可视化等部分,帮助读者理解并实践强化学习算法。 通过这些代码,你可以: - 学习如何在Matlab中创建强化学习环境。 - 理解并实现不同强化学习算法的核心逻辑。 - 学习如何调试和优化强化学习算法。 - 探索不同策略和奖励函数对学习性能的影响。 - 了解如何使用Matlab进行结果分析和可视化。 在实际使用这些代码时,建议先阅读对应的书本章节,理解理论基础,然后对照代码一步步执行,观察学习过程和结果。这样不仅可以加深对强化学习的理解,还能提升编程和问题解决的能力。
2025-05-07 09:57:37 61KB
1
自抗扰控制技术:Boost与Buck变换器的Matlab Simulink仿真与C语言代码实现,"自抗扰控制技术在Boost与Buck变换器中的应用与仿真分析",自抗扰控制Matlab Simulink,ADRC仿真与技术文档。 有以下文件 1,Boost自抗扰仿真,与自抗扰基本原理ppt,加最基本的Boost开环仿真与闭环仿真,pi控制参数,与自抗扰对比。 2,Boost自抗扰2阶ADRC,仿真文件。 二阶自抗扰ADRC传递函数推导,与二阶离散化文件,通过自抗扰对一阶传递函数进行控制的文件。 3,Buck变器基本仿真,从开环到闭环一步一步搭建,到pi参数设计与伯德图程序代码,详细的技术文档,控制量匹配情况,扰动公式都是用mathtype敲好的。 4,二阶Buck变器自抗扰控制仿真,与详细技术文档,负载跳变稳定性更好,闭环带宽测试。 5,自抗扰传递函数推倒公式与Matlab 6,从pid到二阶adrc自抗扰控制器,C语言代码一阶adrc,二阶adrc离散化,详细的介绍文档。 参考文献加LLC,等dcdc变器自抗扰仿真。 仿真是自己一步一步搭建的,每一步仿真都有,技术文档和方案公式都用w
2025-05-06 21:19:01 4.16MB
1
自动驾驶技术:动态避障与路径规划控制系列视频教程——MATLAB Simulink仿真实验及代码实现,自动驾驶路径规划 采用动态规划实现动态避障功能 MATLAB SIMULINK仿真实验视频效果 代码,相应软件安装好即可直接运行 从汽车运动学到动力学模型搭建,设计控制算法,到决策规划算法,一整套自动驾驶规划控制系列目前已在Matlab2018b、carsim2019.1 和prescan8.5.0联合软件上跑通 提供代码 ,核心关键词:自动驾驶; 路径规划; 动态规划; 避障功能; MATLAB SIMULINK仿真实验; 运动学模型; 动力学模型; 控制算法; 决策规划算法; Matlab2018b; carsim2019.1; prescan8.5.0。,"基于动态规划的自动驾驶路径规划与避障系统设计与仿真"
2025-05-04 17:33:30 126KB 柔性数组
1
基于粒子群优化算法PSO优化SVM分类的Matlab代码实现:红酒数据集多分类实验,基于粒子群优化算法PSO优化SVM分类的红酒数据集Matlab代码实现与实验分析,粒子群优化算法PSO优化SVM分类—Matlab代码 PSO- SVM代码采用红酒数据集进行分类实验,数据格式为Excel套数据运行即可 输入的特征指标不限,多分类 可以替数据集,Matlab程序中设定相应的数据读取范围即可 提供三种可供选择的适应度函数设计方案 直接运行PSO_SVM.m文件即可 ,PSO; SVM分类; Matlab代码; 红酒数据集; 特征指标; 多分类; 适应度函数设计; PSO_SVM.m文件,PSO算法优化SVM分类—红酒数据集Matlab代码
2025-05-01 18:28:51 2.54MB 开发语言
1
· 功能说明:代码实现了基于YOLO模型的摔倒行为实时检测,当连续检测到摔倒的帧数超过设定阈值时触发报警。 · · 过程说明:通过摄像头获取视频流帧数据,利用YOLO模型进行目标检测,统计摔倒行为的连续帧数,并在达到报警条件时触发提示或报警逻辑。 基于YOLO模型的摔倒行为实时检测技术是一种利用深度学习方法实现的视觉监测系统,其主要功能是在实时视频流中检测人的摔倒行为,并在识别到摔倒动作后触发报警。这项技术在老年人居家照护、公共场所安全监控等领域具有广泛的应用前景。YOLO模型(You Only Look Once)是一种流行的实时对象检测算法,它能够在单一网络中同时进行目标定位和分类,具有速度快、精度高的特点,非常适合于实时视频分析场景。 YOLO模型的摔倒行为实时检测流程主要包括以下几个步骤:系统通过摄像头设备获取实时视频流的帧数据;将获取的视频帧输入到YOLO模型中进行目标检测,得到包含类别ID、置信度和边界框信息的检测结果;接下来,系统会检查检测结果中是否存在摔倒行为(即类别ID为设定的摔倒类别标识),并统计连续检测到摔倒行为的帧数;当连续帧数超过设定的阈值时,系统将触发报警机制,如在视频中叠加报警提示文字或执行其他报警逻辑,如发送通知到远程设备。 代码实现方面,需要进行模型初始化、视频流读取、YOLO模型预测、摔倒行为判断与报警提示的绘制等操作。具体来说,首先需要安装YOLOv5等模型库,并加载预训练的模型文件;然后,初始化摄像头视频流,并设置摔倒行为的类别标识和报警阈值;在循环读取视频帧的同时,利用YOLO模型进行实时目标检测,并根据检测结果判断是否为摔倒行为;如果检测到摔倒行为,则增加摔倒帧数计数器,并在满足报警条件时输出报警提示;显示处理后的视频,并允许用户通过按键退出程序。 在技术应用中,此类实时摔倒检测系统需要考虑算法的准确性和鲁棒性,例如通过优化YOLO模型训练过程中的数据集和参数设置,以提高对摔倒行为识别的准确率,并减少误报和漏报的情况。同时,系统也应具备良好的可扩展性和易用性,使得非专业人员也能简单快捷地部署和使用。
2025-04-28 19:57:34 13KB yolo
1
MATLAB图像增强工具:复杂代码实现,带GUI界面,可载入原图和参照图像强化,RGB/HSV分量调整,MATLAB图像增强工具:复杂代码实现,带GUI界面,可载入原图和参照图像强化,RGB/HSV分量调整,MATLAB图像增强代码 代码些许复杂,由本人一个朋友编写 是机器视觉和图像增强领域的应用,有gui界面,可以载入原图和参照强化的图像,读取参照图像的RGB或者HSV 分量,并强化原图像, 运行,corrction.m.结果如下图 ,MATLAB图像增强; GUI界面; 载入原图; 参照强化图像; RGB/HSV分量; 图像强化; 运行corrction.m; 结果展示。,MATLAB图像增强程序:机器视觉与GUI界面的优化应用
2025-04-21 12:22:44 5.5MB
1
基于KKT条件的双层电力市场竞标模型:从MPEC到MILP的优化简化过程与代码实现,基于KKT条件的双层电力市场竞标模型:简化为MILP模型的MPEC双层优化策略分析代码解析与初探,GAMS代码:基于KKT条件的双层电力市场竞标模型 关键词:双层优化模型,采用KKT条件和强对偶将MPEC模型简化为MILP模型 代码的部分截图及参考文献见下图 此代码有完整的模型和适用于进行电力市场研究的初学者 ,双层优化模型;KKT条件;强对偶;MPEC模型;MILP模型;电力市场竞标模型;初学者,基于KKT条件的双层电力市场竞标模型:MPEC到MILP的简化研究
2025-04-20 22:50:07 3.23MB
1
MPC模型预测控制:从原理到代码实现,涵盖双积分、倒立摆、车辆运动学与动力学跟踪控制系统的详细文档与编程实践,MPC模型预测控制原理到代码实现:双积分、倒立摆、车辆运动学与动力学跟踪控制案例详解,mpc模型预测控制从原理到代码实现 mpc模型预测控制详细原理推导 matlab和c++两种编程实现 四个实际控制工程案例: 双积分控制系统 倒立摆控制系统 车辆运动学跟踪控制系统 车辆动力学跟踪控制系统 包含上述所有的文档和代码。 ,MPC模型预测控制; 原理推导; MATLAB实现; C++实现; 案例: 双积分控制系统; 倒立摆控制系统; 运动学跟踪; 动力学跟踪控制系统; 文档与代码。,MPC模型预测控制:原理详解与代码实现全解析
2025-04-07 15:19:48 9.18MB
1