内容概要:文章介绍了RAG(Retrieval-Augmented Generation,检索增强生成)技术,这是将信息检索与生成式AI融合的一种创新技术。RAG通过检索、增强和生成三个环节工作:首先将问题转化为向量形式并进行相似度匹配以检索相关信息,然后将这些信息作为上下文输入到模型中增强其理解能力,最后结合这些信息生成高质量的回答。RAG能实时获取最新信息,避免“幻觉”(即生成错误或虚构信息),并能拓展专业知识边界。它在智能客服、企业知识管理和科研等领域展现出巨大应用潜力,但也面临着检索准确性、数据质量等挑战。; 适合人群:对人工智能领域感兴趣的研究人员、工程师及企业管理人员。; 使用场景及目标:①提升智能客服的响应质量和效率;②优化企业内部知识管理,促进知识共享;③辅助科研人员快速获取和整理研究资料。; 其他说明:尽管RAG技术目前面临一些挑战,如检索准确性和数据质量问题,但随着技术的进步,它有望与知识图谱、多模态技术等深度融合,进一步拓展应用场景,为用户提供更加丰富和全面的服务。
2025-07-08 19:02:28 163KB 智能客服 企业知识管理
1
大数据时代的人工智能应用
2025-07-07 16:48:57 16.83MB
1
一、最终作品成果 假日出行数据分析及可视化项目 该项目的展示结果包括了上网模式统计、上网设备类型统计和各省访问量统计等图表。我特别附上了一张详细的“移动用户行为分析及可视化项目展示结果”图片。这张图片展示了不同上网模式下的访问量对比、不同设备类型对访问量的贡献,以及各省访问量的具体统计数据。 移动用户行为分析及可视化项目 该项目的展示结果如图所示,涵盖了上网模式统计、上网设备类型统计以及各省访问量统计等图表。我特别附上了一张详细的“移动用户行为分析及可视化项目展示结果”图片,该图片展示了不同上网模式下的访问量对比、各设备类型对访问量的贡献,以及各省访问量的具体统计数据。 二、完成情况 完成的功能 通过理论学习和实际配置,我深入了解了Hadoop的核心配置文件,并掌握了HDFS和YARN的基本配置及其作用。此外,我学习并配置了Kafka的 server.properties 文件,从而掌握了Kafka集群的基本配置和启动方法。我还成功配置了Hive的 hive-site.xml 文件,理解了Hive与Hadoop的集成配置,并配置了 aj-report 的...
2025-07-07 13:07:08 40.32MB 人工智能 网络安全
1
人工智能领域的语音识别中会产生一些不文明的用语,不文明用语数据集正是在此背景下应用而生,用语过滤在评论和对话过程中识别到的不文明用语。
2025-07-07 11:34:45 4KB 人工智能 数据集
1
文章初评流程:通过语言、文章内容等特征,对文章进行初次评分,剔除低质量文章,减少后续步骤处理。使用 Dify Workflow 项目进行文章初评,详细说明参见 BestBlogs 文章初评流程 文章分析流程:通过大语言模型(如 GPT-4o)对文章进行摘要、分类和评分,生成一句话总结、文章摘要、主要观点、文章金句、所属领域、标签列表和评分等,便于读者快速过滤筛选及了解全文主要内容,判断是否继续阅读。使用 Dify Workflow 项目进行文章分析,包括 分段分析 - 汇总分析 - 领域划分和标签生成 - 文章评分 - 检查反思 - 优化改进 等环节,详细说明参见 BestBlogs 文章分析流程 文章分析结果翻译流程:通过大语言模型(如 GPT-4o)对文章分析结果进行翻译,目前网站支持中英两种语言,根据原文的语言生成目标语言的摘要、主要观点、文章金句、标签列表等。使用 Dify Workflow 项目进行文章分析结果翻译,包括 识别专业术语 - 初次翻译 - 检查翻译
2025-07-07 10:05:40 23.94MB 语言模型 人工智能 agent
1
这里为你收集整理了关于AI,机器学习,深度学习相关的资料一份,质量非常高,如果你投入时间去研究几天相信肯定对你有很大的帮助。到时候你会回来感谢我的。 本资源是经过本地编译测试、可打开、可运行的文件或源码,可以用于毕业设计、课程设计的应用、参考和学习需求,请放心下载。 祝愿你在这个毕业设计项目中取得巨大进步,顺利毕业! 但强调一下,这些项目源码仅供学习和研究之用。在使用这些资源时,请务必遵守学术诚信原则和相关法律法规,不得将其用于任何商业目的或侵犯他人权益的行为。对于任何因使用本资源而导致的问题,包括但不限于数据丢失、系统崩溃或安全漏洞,风险自担!
2025-07-05 19:00:27 24.76MB 人工智能 Ai 机器学习
1
人工智能与大数据分析的融合在多个行业领域带来了革命性的变革。人工智能技术,包括机器学习、深度学习和自然语言处理等,正逐步应用于大数据分析中,以实现更精确的决策支持和数据价值挖掘。大数据的特点是数据量大、处理速度快、价值密度低,其在现代社会的重要性日益凸显,特别是在金融、医疗、教育和安防等领域,对企业和政府的决策产生了深远的影响。 结合方式方面,人工智能通过数据挖掘和机器学习等技术,对大数据进行分析处理,发现数据中的潜在价值,提供更加精准的决策支持。自然语言处理技术在文本分类、信息抽取和情感分析等任务中展现出极大的潜力,而图像识别技术在物体和场景识别、图像分类等方面也取得了显著进步。语音识别技术,包括语音转文字、语音合成和语音情感分析,则进一步促进了信息传递和沟通的智能化。 基于人工智能的决策支持系统(DSS)结合了人工智能技术和大数据资源,为决策者提供科学、合理的决策辅助。这种系统具备数据驱动、智能化、交互式和集成化的特点,通过数据层、分析层、模型层和展示层的架构,实现了从数据采集到展示的全面支持。 在实际应用中,智能推荐系统作为人工智能在大数据决策支持中的应用案例之一,通过机器学习和数据挖掘技术,能够根据用户行为和偏好进行精准推荐,广泛应用于电商、视频和音乐等领域。智能推荐系统的成功展示了人工智能在提升用户体验和增强业务竞争力方面的巨大潜力。 未来,人工智能与大数据分析的结合将进一步深化,研究将集中在解决现有技术挑战和优化人工智能算法,使其更加高效、准确地处理和分析大数据。随着技术的进步,人工智能在大数据分析中的应用将更加广泛,为各个行业领域带来更多的创新和机会。 展望未来,人工智能在大数据分析领域的应用前景广阔,预计将推动更多智能化产品的开发和服务的优化,助力企业和组织在激烈的市场竞争中占据优势。研究结论与展望部分将总结当前研究的主要发现,探讨人工智能在大数据分析中的应用现状和挑战,并对未来发展进行展望。
2025-07-05 18:04:39 1.81MB
1
人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它企图理解智能的实质,并生产出一种新的能以人类智能相似方式做出反应、学习、推理和决策的智能机器。人工智能技术包括非常广泛的子领域,例如机器学习、自然语言处理、计算机视觉、机器人学等。 ### 主要特点 1. **自动化**:AI系统可以自动执行任务,无需人类干预。 2. **学习能力**:通过机器学习,AI可以从数据中学习并不断改进。 3. **推理能力**:AI能够进行逻辑推理,解决复杂问题。 4. **感知能力**:通过计算机视觉和自然语言处理,AI可以理解图像和语言。 5. **适应性**:AI可以适应新环境和新任务。 ### 应用领域 - **健康医疗**:辅助诊断、患者监护、药物研发等。 - **金融服务**:风险管理、算法交易、信贷评估等。 - **交通物流**:自动驾驶、智能调度、物流优化等。 - **教育**:个性化学习、智能辅导、自动化评分等。 - **制造业**:自动化生产线、预测性维护、质量控制等。 - **客户服务**:聊天机器人、语音助手、智能推荐等。
2025-07-05 18:03:20 5KB 人工智能 数据分析
1
随着人工智能技术的快速发展,汽车行业正在经历一场深刻的变革。越来越多的传统车企和新兴造车势力纷纷接入名为DeepSeek的AI平台,这一趋势不仅促进了汽车智能化进程的加速,同时也加剧了智能化竞争。DeepSeek平台因其强大的理解与推理能力,在电信、云计算、芯片、金融、汽车、手机等多领域得到了广泛的应用,其中200多家头部企业已经宣布接入。 具体到汽车行业,吉利、岚图、智己、长城、广汽、长安、奇瑞等20多个主流车企与DeepSeek的深度融合,彰显了对智能化技术的重视。通过接入DeepSeek,这些车企能够显著提升车辆座舱内语音交互和感知决策等方面的智能化水平,为用户提供更加智能化、个性化的用车体验。在技术实现路径方面,车企主要采用了直接接入、多模型联合协同部署、模型深度融合与蒸馏等三种接入方式。 然而,智能汽车产业的蓬勃发展也存在一些挑战。部分新势力车企对生态控制权的考量,致使它们迟迟未官宣与DeepSeek的合作。对于传统车企而言,虽然接入DeepSeek能够实现AI功能的跃升,但过度依赖外部模型可能产生技术依赖风险,并且容易导致同质化竞争加剧。此外,不同品牌之间的差异可能仅限于UI设计层面,从而减少了产品的独特性。 当前,自主品牌的传统车企普遍已经接入DeepSeek,而部分拥有较深厚AI技术储备的新势力车企尚无接入计划。这些车企可能更倾向于依靠自身数据分析和训练能力,以保持技术独立性和竞争优势。 车企接入DeepSeek平台是一把双刃剑。它为车企提供了提升智能化水平的捷径,但也给行业发展带来了一系列深层次的思考和挑战。在这一过程中,车企需要权衡技术依赖与创新自主之间的关系,并寻找可持续发展的战略路径。
2025-07-04 09:57:02 3.18MB AI 人工智能
1
【Hierarchical RL】动态分层强化学习(DHRL)算法代码 动态分层强化学习,Dynamic Hierarchical Reinforcement Learning (DHRL) 是一种自适应分层强化学习算法,其目标是根据任务和环境的复杂性动态地构建、修改和利用分层策略。DHRL 不仅仅是预定义层次结构的简单执行,而是允许代理在学习过程中根据需要动态生成和调整分层策略,从而实现更好的任务分解和高效学习。 DHRL 扩展了传统的分层强化学习(HRL),通过动态调整层次和策略,使其适应环境中的变化和不确定性。这种方法能够处理复杂任务,特别是那些需要灵活调整策略或面临多种不同子任务的情景。
1