基于Refprop数据库的涡轮、压气机与泵的0维等熵效率模型:Matlab代码实现与验证研究,基于Refprop数据库的涡轮、压气机及泵的0维等熵效率模型Matlab编程与有机朗肯循环R123工质验证,涡轮,压气机,泵的0维等熵效率模型。 采用matlab代码编写,refprop数据库调用物性数据。 给定部件的进口压力,温度,压力比,等熵效率,可以得到出口状态和部件功率。 以有机朗肯循环的R123工质对涡轮模型进行了验证。 ,涡轮; 压气机; 泵; 0维等熵效率模型; MATLAB代码编写; RefProp数据库调用; 进口压力; 温度; 压力比; 等熵效率; 出口状态; 部件功率; 有机朗肯循环; R123工质验证。,MATLAB代码:R123工质涡轮等熵效率模型与REFPROP数据库的0维分析
2025-07-24 13:36:28 516KB
1
在当今科技发展的背景下,各种复杂决策问题的解决方法层出不穷,而DEMATEL-ISM方法作为一种结合了决策试验和评价实验室(DEMATEL)以及解释结构模型(ISM)的技术,因其在处理复杂系统相互关系中的优势,被广泛应用于决策分析领域。MATLAB作为一种高效的数学计算和仿真软件,在实现DEMATEL-ISM方法中扮演了重要角色。 DEMATEL方法,全称决策试验和评价实验室方法,是一种用于分析和解决复杂决策问题的技术。它通过构建直接影响矩阵,并通过矩阵运算来反映各因素之间的相互影响,从而揭示系统中各元素间的因果关系。ISM方法,即解释结构模型方法,是一种用于描述复杂系统层次结构的模型技术,它通过建立直接关系矩阵并经过多层推导,最终将复杂关系简化为有序的层次结构,便于理解和分析。 将DEMATEL与ISM结合起来,可以更有效地分析和解释复杂系统的内部结构和相互关系。这种方法通过DEMATEL来建立元素间的影响关系矩阵,并进一步通过ISM将这些关系结构化,形成一种层次化的因果关系图,以此来辅助决策者对复杂系统有一个清晰的认识。 MATLAB是一种高性能的数学计算软件,其强大的计算能力和丰富的数学函数库使其在各种工程计算和数据分析领域得到了广泛应用。在DEMATEL-ISM方法中,MATLAB可以有效地实现从矩阵的构建、计算到结果的可视化等一系列处理过程。用户可以通过MATLAB编写相应的代码,利用其提供的矩阵操作功能,高效地进行DEMATEL-ISM的计算和仿真。 在文件名称列表中出现的“1748498978资源下载地址.docx”,很可能是一个有关于DEMATEL-ISM方法资源或者示例的文档。用户可以通过这个文档获取有关DEMATEL-ISM方法的理论知识、实践案例或者MATLAB代码的下载链接。而“doc密码.txt”这个文件名暗示了可能存在的文档访问权限保护,需要通过特定的密码才能打开和阅读文档内容。 DEMATEL-ISM方法结合MATLAB的实现,为复杂决策问题的分析提供了强大的工具和方法。通过MATLAB编程,研究人员和工程师能够将DEMATEL-ISM方法应用于各种实际问题中,以期得到更为合理和科学的决策支持。而相关资源文档的下载和阅读,则有助于用户深入理解该方法的理论基础和实际应用。
2025-07-09 16:14:53 56KB Matlab代码
1
基于Lasso回归算法的数据预测分析(Matlab代码实现,推荐版本2018B及以上),基于Lasso回归的数据回归预测 Lasso数据回归 matlab代码, 注:暂无Matlab版本要求 -- 推荐 2018B 版本及以上 ,核心关键词:基于Lasso回归的数据回归预测; Lasso数据回归; Matlab代码; Matlab 2018B及以上版本。,基于Lasso回归的数据预测与Matlab代码实现 基于Lasso回归算法的数据预测分析是一项深入探讨如何利用Lasso回归模型,在数据科学和统计学中进行预测和特征选择的研究。Lasso回归,全称为最小绝对收缩和选择算子回归(Least Absolute Shrinkage and Selection Operator),是一种通过在回归过程中加入L1正则项来增强模型预测准确性的技术。这种正则化方法能够在参数估计中引入稀疏性,也就是说,在回归系数中促使一些系数准确地变为零,从而实现自动的特征选择功能。这在处理高维数据,尤其是特征数量可能远超过样本数量的情况时,显得尤为重要。 在计算机科学和数据分析领域,回归分析是一种非常重要的统计工具,它用于研究变量间的关系,尤其是预测一个或多个自变量与因变量之间的关系。回归分析的主要目的是建立一个数学模型来描述这种关系,然后利用这个模型进行预测或者控制某些变量。而Lasso回归算法正是在传统回归分析的基础上引入了正则化技术,能够有效地防止过拟合,并且在数据特征选择上具有独特的优势。 在数据回归预测中,Lasso回归模型的一个重要应用就是变量选择。在面对多变量数据集时,有些变量可能与目标变量关系不大或无关系,而Lasso回归能够通过惩罚系数的绝对值来“压缩”这些不重要的变量系数至零,从而实现自动选择有意义的变量,提高模型的解释力和预测性能。 在Matlab环境中实现Lasso回归的代码,可以帮助数据分析师快速构建和测试Lasso回归模型。Matlab是一种广泛应用于工程计算、数据分析的高级编程和数值计算平台。Matlab提供了丰富的工具箱,其中就包括用于统计分析和机器学习的工具箱。推荐使用Matlab 2018B及以上版本,可能是因为在这些版本中对相关函数的性能和稳定性进行了优化,提供了更为强大的计算能力以及更多便捷的接口来支持复杂的数据处理和算法实现。 在研究中,文档资料通常起到重要的辅助作用。例如,像“在计算机科学和数据分析领域回归分析是一种常用的统计.doc”这样的文件,很可能是对回归分析概念、应用场景、算法原理等基础知识的介绍;而“基于回归的数据回归预测深度技术分析与.txt”则可能包含了对Lasso回归在数据预测方面应用的深入研究和分析。图片文件如“1.jpg”至“4.jpg”可能是对应研究内容的图表或模型可视化,帮助直观理解研究结论和数据处理结果。 对于研究者和工程师而言,掌握Lasso回归算法及其在Matlab中的实现,不仅能够提升数据分析的准确性,而且在处理大量数据时,能够更有效地识别出影响因变量的关键因素,优化模型结构。此外,Lasso回归模型因其简洁性和在稀疏性上的优势,在金融、生物信息学、信号处理等多个领域都有广泛应用。 基于Lasso回归的数据回归预测分析不仅是一个理论和实践并重的领域,也是一个跨学科的研究方向,它结合了统计学、机器学习、计算机科学等多个学科的知识,为复杂数据集的分析提供了新的视角和工具。通过Matlab这一强大的计算平台,研究者可以更加便捷地实现Lasso回归算法,并将理论知识应用到实际问题中,以解决现实生活中的各种数据预测问题。
2025-07-09 15:59:00 276KB edge
1
深入解析LBM格子玻尔兹曼方法在MRT模拟3D流动的Matlab代码实现,基于LBM格子玻尔兹曼方法MRT模拟3D流动的Matlab代码研究与应用,lbm格子玻尔兹曼方法mrt模拟3D流动 matlab代码 ,lbm;格子玻尔兹曼方法;mrt;3D流动模拟;matlab代码;,LBM格子玻尔兹曼MRT方法3D流动Matlab模拟代码 在计算流体动力学领域,格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种新兴的数值计算方法,它通过模拟微观粒子的运动来研究宏观流体的动态行为。LBM方法在计算多相流、多孔介质流动以及复杂的流体动力学问题方面显示出其独特的优势,特别是在模拟复杂的边界条件和非均匀流动时,LBM方法相较于传统的Navier-Stokes方程求解方法具有更高的计算效率和更好的数值稳定性。多重松弛时间(Multi-Relaxation-Time,简称MRT)模型则是LBM方法的一个重要改进,它通过引入多个松弛时间来处理不同速度分布函数的弛豫过程,从而更加精确地控制流体的动力学行为。 本研究深入解析了LBM格子玻尔兹曼方法在MRT模型下模拟三维流动的Matlab代码实现。在实现过程中,首先需要建立适合于三维流动模拟的格子模型,常见的有D3Q15、D3Q19和D3Q27等,这些模型的区别在于它们在三维空间中的离散速度方向数不同。然后,通过设置合适的边界条件和初始条件,利用MRT模型来描述粒子碰撞过程中的弛豫时间,编写相应的Matlab代码进行流动场的计算。 Matlab作为一种强大的数值计算和仿真工具,其内置的矩阵运算能力非常适合处理LBM方法中的大规模格点计算。通过Matlab编程,可以较为直观地实现复杂流体的数值模拟,从而在研究和工程应用中发挥重要作用。本研究不仅详细介绍了LBM方法和MRT模型的理论基础,还提供了具体的Matlab代码实现案例,包括了流动场的初始化、离散速度分布函数的计算、碰撞过程的迭代以及流场信息的提取等关键步骤。这些案例代码对于理解和应用LBM方法具有重要的参考价值。 此外,文档中还包括了关于如何使用Matlab来模拟流动的详细解释,以及如何在不同应用场景下调整和优化代码的指南。这些内容不仅对于流体力学的学者和工程师来说是非常宝贵的学习资源,也对相关领域的研究者和学生具有重要的参考意义。 随着计算技术的不断进步,LBM方法的应用领域也在不断拓展。由于其在模拟复杂流动现象方面的显著优势,LBM方法被广泛应用于工业设计、环境科学、生物医学工程以及物理学等多个学科领域中。而在Matlab环境中实现LBM方法的模拟不仅降低了计算的难度,也使得更多的科研人员能够参与到这一方法的研究和应用中来。 通过深入分析LBM格子玻尔兹曼方法和MRT模型,结合Matlab编程实践,本研究为三维流动的数值模拟提供了有效的理论和实际操作指导。这些内容的综合阐述,对于推动流体力学及相关领域的发展,以及促进跨学科交流具有重要的意义。
2025-06-24 09:47:20 1.56MB
1
很多同学问我怎么实现全局轨迹加局部局部实时轨迹,下面就是实现的思路。 1、首先,我们的代码主体还是DWA三维的代码; 2、我们生成一条全局的参考代码(也可以是三维RRT算法计算得到的轨迹); 3、给机器人一个感知范围,当感知到全局路径上有障碍物时,则计算出可以避开障碍物的切入点和切出点,这两个分别是全局路径上的路径点;(切出点就是从全局路径点出来的点,切入点就是回到全局路径上的点); 在现代机器人技术中,路径规划是指机器人从起始点到目标点进行自主移动的过程中的运动规划。路径规划的核心目标是在机器人运动的过程中,避开障碍物,保证运动的安全性和效率。为了达到这一目的,路径规划通常分为全局路径规划和局部路径规划两个层次。 全局路径规划主要负责在全局的地图信息中为机器人规划出一条从起点到终点的无碰撞路径。为了实现这一目标,研究者们开发出了许多高效的路径规划算法。其中,快速随机树(Rapidly-exploring Random Tree, RRT)算法就是一种被广泛使用的基于概率的路径规划方法,特别适合于高维空间和复杂环境的路径规划问题。RRT算法的基本思想是从起始状态开始,随机地在空间中扩展树状结构,并逐步逼近目标状态,最终生成一条可行走路径。RRT算法通过随机采样来增加树的节点,再使用贪心策略选择最佳扩展方向,直到找到一条连接起点和终点的路径。 然而,全局路径规划虽能给出一条大致的行走轨迹,但在实际操作过程中,环境信息的实时变化(如动态障碍物的出现)往往要求机器人能够实时调整自己的行进路线。这时就需要局部路径规划发挥其作用。局部路径规划的核心在于根据机器人当前的感知信息快速生成一条避障后的可行路径。动态窗口法(Dynamic Window Approach, DWA)就是局部路径规划中的一种常用算法,其主要思想是根据机器人的动态模型,考虑机器人在极短时间内可能达到的所有速度状态,并从中选择一个最优速度以避免障碍物和达到目标。DWA算法能够在短时间内做出快速反应,实现局部路径的实时调整。 将全局路径规划和局部路径规划结合起来,可以使得机器人在运动中既考虑了整体的效率,又能够灵活应对突发事件。这种混合式路径规划方法的实现思路是:首先使用全局路径规划算法生成一条参考路径,然后机器人在执行过程中不断利用局部路径规划算法来微调自己的行动,以避开障碍物。当机器人通过传感器感知到全局路径上存在障碍物时,局部路径规划算法将被激活,计算出一条避开障碍物的切入点和切出点,切入点和切出点都位于全局路径上。切入点是机器人离开全局路径开始避开障碍物的路径点,而切出点则是机器人成功绕过障碍物后重新回到全局路径上的路径点。 结合全局路径规划和局部路径规划的优点,可以实现机器人的高效、安全导航。例如,在实现代码中,尽管代码主体基于DWA算法,但也能够接受通过三维RRT算法计算得到的轨迹作为全局路径参考。这样的策略保证了机器人在复杂环境中的导航能力和实时避障的灵活性。 为了方便其他研究者和工程技术人员理解和复现上述路径规划方法,文章还包含了详细的注释。这样的做法不仅可以帮助读者更好地理解算法原理,同时也能够促进相关技术的交流和创新。
2025-06-23 10:28:03 14KB 全局规划 matlab代码实现
1
基于粒子群优化算法PSO优化SVM分类的Matlab代码实现:红酒数据集多分类实验,基于粒子群优化算法PSO优化SVM分类的红酒数据集Matlab代码实现与实验分析,粒子群优化算法PSO优化SVM分类—Matlab代码 PSO- SVM代码采用红酒数据集进行分类实验,数据格式为Excel套数据运行即可 输入的特征指标不限,多分类 可以替数据集,Matlab程序中设定相应的数据读取范围即可 提供三种可供选择的适应度函数设计方案 直接运行PSO_SVM.m文件即可 ,PSO; SVM分类; Matlab代码; 红酒数据集; 特征指标; 多分类; 适应度函数设计; PSO_SVM.m文件,PSO算法优化SVM分类—红酒数据集Matlab代码
2025-05-01 18:28:51 2.54MB 开发语言
1
基于加权加速度均方根值分析的汽车平顺性MATLAB代码实现:新国标下的计算方法与输出结果,基于Matlab代码的汽车平顺性分析:新国标下加权加速度均方根值计算方法及输出结果分析,加权加速度均方根值 matlab代码 汽车平顺性分析 新国标下的加权加速度均方根值计算 输入为加速度样本 输出加速度功率谱密度 以及加权加速度均方根 ,加权加速度; 均方根值; MATLAB代码; 汽车平顺性分析; 新国标计算; 输入样本; 输出功率谱密度; 加权加速度均方根值,新国标下汽车平顺性分析的加权加速度均方根值计算与Matlab代码实现
2025-04-02 09:57:38 1.07MB
1
在电子设计领域,微带线(Microstrip Line)是一种广泛使用的传输线结构,常用于射频和微波电路。它由一个金属条和一个接地平面组成,金属条位于介质层之上,两者之间通过空气或特定的电介质材料隔开。微带线因其易于制造、成本低廉和灵活性高等优点,被大量应用于天线设计、滤波器构建以及阻抗匹配网络等。 本文将探讨如何使用MATLAB来快速进行微带线元件的等效电感和电容计算。MATLAB是一种强大的数学计算软件,拥有丰富的函数库和可视化工具,适合处理复杂的电磁问题。 我们来看文件`microstrip_calW.m`。这个文件很可能是实现微带线特性阻抗计算的MATLAB脚本。微带线的特性阻抗(Z0)是其电气性能的一个关键参数,它与微带线的宽度(W)、厚度(h)、介电常数(εr)以及工作频率有关。计算公式通常基于物理光学法或混合模式方法。在脚本中,我们可以期待找到输入这些参数并输出特性阻抗的函数。 接下来是`TLINE_equivalent.m`文件,这可能是实现微带线等效电路模型的MATLAB程序。微带线可以等效为串联和并联的电感、电容网络,用于分析其频率响应和阻抗特性。在高频下,微带线可以视为具有分布参数的传输线,其中每单位长度都有一定的电感(L)和电容(C)。这些参数可以通过物理尺寸和频率来计算,然后用于构建等效电路模型,用于模拟微带线的行为。 在提供的链接中,博主详细介绍了如何使用MATLAB进行这些计算。他们可能使用了现有的MATLAB电磁工具箱,如RF Toolbox或者Electromagnetic Compatibility (EMC) Toolbox,或者自定义了算法来实现这些功能。通常,这些工具或算法会涉及到以下步骤: 1. **定义微带线的几何参数**:包括宽度W、厚度h、介质层的介电常数εr和损失角正切tanδ,以及长度l。 2. **选择合适的计算模型**:例如物理光学法、矩量法或有限元方法。 3. **计算特性阻抗Z0**:根据选定的模型和输入参数进行计算。 4. **等效电路建模**:利用传输线理论,将微带线转换为等效的LC网络,这涉及求解微带线的分布参数L和C。 5. **频率响应分析**:使用等效电路模型,可以分析微带线在不同频率下的电压和电流分布,以及反射系数和阻抗匹配情况。 6. **验证与仿真**:与电磁仿真软件的结果进行对比,确保计算的准确性。 通过阅读和理解这两个MATLAB脚本,设计师可以快速计算微带线的特性,并进行相应的电路设计。这种方法对于射频和微波工程的学习和实践非常有价值,因为它提供了一种快速、直观的方式来理解和优化微带线组件的性能。 这个压缩包包含的MATLAB代码和相关博客文章为理解和使用微带线提供了实用的工具,帮助工程师和学生在实际项目中有效地分析微带线的电磁特性,进行等效电路建模,从而优化他们的设计。通过深入学习和实践,读者能够掌握微带线设计的关键概念和计算方法,提升其在射频领域的专业技能。
2024-07-05 10:58:29 1KB matlab
1
布尔莎七参数坐标转换模型的matlab代码实现。 当观测的公共控制点大于3个时,可采用间接平差法求得空间坐标转换模型中的七个参数,即七参数转换模型。https://blog.csdn.net/qq_36686437/article/details/124509019。
2024-03-06 15:02:23 2KB matlab
1
CBAM注意力机制的MatLab代码实现,感兴趣的可以下载看看,代码分模块封装好了,简单易用!
2023-12-09 15:01:04 3KB matlab CBAM 注意力机制 深度学习
1