深度学习(DL,Deep Learning)是计算机科学机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标-人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。  深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果 【深度学习】 深度学习是机器学习领域的一个重要分支,其核心在于构建深层次的神经网络模型,模拟人脑的学习过程,以实现对复杂数据的高效处理和理解。它旨在通过多层非线性变换,自动从原始数据中提取特征,从而解决模式识别、图像识别、语音识别等挑战性问题。 【卷积神经网络(CNN)】 卷积神经网络是深度学习中的关键架构,特别适合处理图像数据。CNN由卷积层、池化层、全连接层等组成,其中卷积层通过滤波器(或称卷积核)对输入图像进行扫描,提取特征;池化层则用于降低数据维度,减少计算量,同时保持关键信息;全连接层将前面层提取的特征进行分类决策。 【深度学习的应用】 1. **图像识别**:深度学习,尤其是CNN,已经在图像识别任务中取得了显著成就,如图像分类、物体检测、人脸识别等。 2. **语音识别**:深度学习可以用于语音信号的处理和识别,提高语音识别的准确率。 3. **自然语言处理**:在文本理解、语义分析、机器翻译等领域,深度学习通过词嵌入和循环神经网络等技术推动了显著的进步。 4. **推荐系统**:结合用户行为数据,深度学习可以生成个性化推荐,提高用户体验。 5. **自动驾驶**:在交通标志识别、车辆检测等自动驾驶的关键环节,CNN发挥了重要作用。 【本文主要贡献】 1. **改进LeNet-5模型**:通过对LeNet-5经典模型的扩展和调整,构建了不同结构的卷积神经网络模型,用于光学字符识别(OCR),分析比较不同模型的性能。 2. **多列卷积神经网络**:借鉴Adaboost的思想,设计了一种多列CNN模型,用于交通标志识别(TSR)。通过预处理数据和训练,提高了识别准确率。 3. **实验验证**:通过实验证明了CNN在手写数字识别和交通标志识别问题上的有效性,并与其他分类器进行了比较,评估了CNN在实际应用中的性能优势。 【总结】 深度学习和卷积神经网络的结合为解决复杂的人工智能问题提供了强大工具,从图像识别到自然语言理解,再到语音处理,都有广泛应用。本文通过构建和优化CNN模型,展示了其在光学字符识别和交通标志识别中的高效表现,进一步巩固了深度学习在这些领域的地位。随着技术的不断发展,深度学习和CNN在更多领域的潜力将持续被发掘,为人工智能的进步贡献力量。
2025-05-08 00:15:52 5.99MB 人工智能 深度学习 毕业设计
1
烟火检测是一种计算机视觉任务,主要用于识别和定位图像或视频中的烟雾和火焰。这类检测在森林防火、工业安全监控、智能城市监控等应用中具有重要意义。与其他目标检测任务相比,烟火检测具有一些独特的挑战,如火焰的形状不规则、颜色变化多端、背景复杂等。 YOLO等实时目标检测算法由于其速度快、全局推理的特点,也被应用于烟火检测任务中。通过训练YOLO模型,检测系统能够快速识别出图像或视频中的烟雾和火焰区域,并在实际场景中实时预警。 优点: YOLO在烟火检测中的高效性使其能够在实时视频流中快速做出检测,适合应用于监控系统、无人机巡检等场景。 缺点: 在烟雾、火焰形状复杂多变的情况下,YOLO可能需要通过大量数据增强和模型优化来提升检测精度。 应用场景: 森林防火监控: 利用烟火检测系统对森林进行实时监控,及时发现火灾隐患。 工业安全: 在工厂、石化等高危环境中,烟火检测系统可以帮助快速发现火灾源头,减少财产损失和人员伤亡。 城市监控: 智能监控系统结合烟火检测算法,能够在城市公共区域实时预警火灾,提高城市安全。 烟火检测技术的发展有助于提升火灾预防和应急响应的效率,减少火灾带来的危害。
2025-05-07 16:05:13 125.45MB 目标检测 烟火识别 深度学习
1
在低照度场景下进行目标检测任务,常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题,给检测带来一定的难度。 使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。 本资源包含传统方法、Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强代码,均已经过测试,可直接运行。 ### 低照度图像增强技术概述 在计算机视觉领域,特别是在目标检测任务中,低照度环境下的图像处理是一项极具挑战性的任务。由于光线不足,这类图像通常具有较差的可视性,导致RGB特征信息减少,这直接影响到后续的特征提取、目标识别与定位的准确性。为了解决这一问题,研究者们开发了多种图像增强技术,通过对原始图像进行画质提升,恢复图像中的关键信息,从而改善目标检测的效果。 ### 图像增强技术原理 图像增强技术主要是指通过一系列算法处理来改善图像质量的过程。在低照度环境下,主要目的是增强图像亮度、对比度以及颜色信息,以便更好地提取特征。这些技术可以大致分为两类:传统图像处理方法和基于深度学习的方法。 #### 传统图像处理方法 1. **Retinex算法**:Retinex是一种经典的图像增强算法,它模拟人眼感知颜色的方式,通过多尺度分析来恢复图像的真实色彩和细节。 2. **SCI(Single Image Contrast Enhancement)**:这是一种单图像对比度增强方法,通过调整图像的局部对比度来增强图像的细节。 3. **Zero-DCE(Zero-reference Deep Curve Estimation)**:这是一种无需任何参考图像就能进行曲线估计并实现图像增强的技术。 #### 基于深度学习的方法 1. **EnlightenGAN**:这是一种结合生成对抗网络(GAN)的图像增强方法,能够生成更逼真且自然的图像,适用于低照度环境。 2. **IceNet**:IceNet是一种基于深度学习的低光照图像增强模型,能够有效地恢复图像的细节,并保持良好的视觉效果。 3. **RRDNet(Recurrent Residual Dense Network)**:这是一种利用循环残差密集网络进行图像增强的技术,适用于低光照条件下的图像恢复。 4. **URetinex-Net**:这是结合了U-Net架构和Retinex理论的一种深度学习模型,专门用于低照度图像的增强。 ### 技术应用案例 以上提到的各种技术均有其应用场景。例如,在安防监控、夜间野生动物监测等领域,低照度图像增强技术的应用至关重要。通过使用这些技术,可以显著提高图像的质量,进而提高后续处理如目标检测、人脸识别等任务的准确率。 ### 实践资源 为了方便研究者和开发者进行实践探索,提供了一系列低照度图像增强的代码资源,包括但不限于上述提及的各种技术。这些代码经过测试验证,可以直接运行使用。具体资源可以通过链接:[https://pan.baidu.com/s/1H52f68LmRv9ohi5N4sS5jg](https://pan.baidu.com/s/1H52f68LmRv9ohi5N4sS5jg) 获取,提取码为:j666。 ### 结论 低照度图像增强技术对于提高计算机视觉任务的性能至关重要。无论是传统的图像处理方法还是近年来兴起的基于深度学习的技术,都在不断地推动着该领域的进步和发展。通过合理选择和应用这些技术,可以极大地改善低照度条件下图像的质量,进而提高目标检测等任务的准确性和可靠性。未来,随着更多新技术的出现和现有技术的不断优化,低照度图像增强领域将展现出更加广阔的应用前景。
2025-05-07 15:58:05 10KB 图像增强 深度学习
1
在自动驾驶技术中,坐标变换和图像处理是至关重要的环节,它们为车辆提供了对周围环境的精确理解。本项目中,通过使用MATLAB进行坐标变换,将来自不同传感器(如相机和毫米波雷达)的数据整合成统一的鸟瞰图,从而实现更有效的路径规划和障碍物检测。 我们来了解一下坐标变换的概念。在自动驾驶系统中,存在多种坐标系,例如相机坐标系、毫米波雷达坐标系、车辆坐标系和全局地图坐标系等。这些坐标系之间的转换对于融合不同传感器的信息至关重要。MATLAB 提供了一系列强大的数学工具,如 `transformPoint` 和 `geotrans` 函数,用于在不同坐标系之间进行平移、旋转和缩放操作,确保数据的一致性和准确性。 图像处理在该过程中也扮演了重要角色。相机是自动驾驶汽车获取环境视觉信息的主要方式,但原始图像数据需要经过预处理才能转换为有用的信息。描述中提到的“鸟瞰图”是一种将三维空间信息投影到二维平面的技术,它可以帮助车辆获得广阔的视野,识别出道路上的障碍物和车道线。这个过程通常包括图像校正、色彩增强和透视变换等步骤,其中透视变换是将图像从正常视角转换为顶部视角的关键,可以使用MATLAB的 `imtransform` 函数来实现。 深度学习在这个领域也有着广泛的应用。它可以用来训练模型自动检测图像中的特定对象,如行人、车辆或其他道路标志。这些深度学习模型,如卷积神经网络(CNN),可以从大量的标注数据中学习特征,并在实时运行时快速准确地识别目标。在MATLAB中,可以使用 `deepLearningToolbox` 来构建、训练和部署这样的模型。 至于标签“matlab坐标变换”,这表明项目着重于利用MATLAB的函数来完成坐标变换任务。MATLAB提供了丰富的数学库,使得用户能够方便地进行几何变换,包括旋转、平移和缩放,这对于处理不同传感器的坐标系至关重要。而“图像”标签则意味着图像处理和分析是项目的核心部分,这涉及到图像预处理、特征提取和目标检测等多个方面。 这个项目展示了如何综合运用MATLAB的坐标变换工具和图像处理技术,结合深度学习模型,来解决自动驾驶领域的关键问题。通过将多传感器数据整合到统一的鸟瞰图中,可以提高系统的感知能力和决策效率,进一步推动自动驾驶技术的发展。
2025-05-07 10:46:02 1.02MB matlab坐标变换 深度学习
1
根据自己所在行业的经验,亲自通过本地化部署DeepSeek及深度学习框架,实现医疗数据的本地化训练。通过 DeepSeek 本地化训练和病历数据分析,旨在提高疾病诊断的准确性和效率,辅助医生制定更优化的治疗方案。同时,挖掘病历数据中的潜在价值,为医学研究提供数据支持,推动医疗行业的发展。 随着医疗健康行业的发展,患者病历数据的私密性保护和高效利用成为医疗信息科技领域的重要议题。医疗数据私有化部署是保护患者隐私的关键措施,它通过在受控的本地环境中处理数据,来满足相关法律法规的要求,并确保数据安全。同时,利用本地化部署的深度学习框架,如DeepSeek,可以实现针对医疗数据的深度学习模型训练,提高医疗诊断的准确性和效率。 在进行DeepSeek本地化部署之前,需要做好充分的准备工作。硬件环境的搭建至关重要,包括服务器的选择、CPU和GPU的配置、内存和存储设备的安装。在本文中,推荐使用戴尔PowerEdge R750xd服务器,该服务器拥有良好的扩展性和稳定性,适合处理大规模的医疗数据和深度学习模型训练任务。具体硬件配置上,强调了使用英特尔至强处理器和NVIDIA A100 PCIe GPU,以及大容量DDR4内存和快速的SSD和NVMe SSD存储。这样的配置能够确保医疗数据处理和模型训练的高效性。 软件环境的准备同样重要。操作系统需要进行更新和升级,以保证系统的稳定性和安全性。深度学习框架的选择上,Anaconda环境的搭建被推荐,因为其方便管理和环境隔离的特性,有助于深度学习项目在医疗数据上的应用。文中还强调了使用最新版的PyTorch框架,并在相应的CUDA环境中进行安装,以利用GPU加速模型的训练。数据库方面,建议使用MySQL数据库来存储病历数据,这有助于数据的组织、查询和管理。 数据准备工作包括数据收集、清洗、标注三个重要环节。医疗数据的收集通常来源于医院信息系统,内容包括患者基本信息、症状描述、诊断结果、检查报告和治疗记录等。数据清洗主要针对数据完整性、准确性的提升,运用Python Pandas库等工具处理数据中的缺失值、重复值和异常值。数据标注则是为了提供给深度学习模型训练所需的标注数据,特别是在疾病分类或预测等任务中。 DeepSeek本地化部署实施步骤涵盖了从硬件选择到软件配置,再到数据处理的全过程。通过遵循这些步骤,医疗行业机构能够有效地实施本地化的深度学习训练环境。这样的环境不仅保障了患者数据的安全和隐私,还能通过深度学习模型在医疗数据上的训练,辅助医生进行更准确的疾病诊断,从而提高整体的医疗服务质量和效率。同时,挖掘病历数据中的潜在价值,为医学研究提供支持,推动医疗行业发展。 医疗数据的深度学习应用正逐渐成为推动医疗行业发展的重要力量。通过本地化部署,医疗行业能够充分利用自身数据资源,通过先进的数据分析和机器学习技术,实现智能化的疾病诊断和治疗方案优化。未来,随着技术的不断进步和医疗数据的进一步积累,将有更多创新性的应用产生,为医疗行业带来更多的可能性。
2025-05-07 09:27:08 228KB 深度学习 PyTorch 医疗数据 本地化部署
1
内容概要:本文介绍了一种改进的视觉Transformer(ViT)模型,重点在于引入了三重注意力机制(TripletAttention)。TripletAttention模块结合了通道注意力、高度注意力和宽度注意力,通过自适应池化和多层感知机(MLP)来增强特征表达能力。具体实现上,首先对输入特征图进行全局平均池化和最大池化操作,然后通过MLP生成通道注意力图;同时,分别对特征图的高度和宽度维度进行压缩和恢复,生成高度和宽度注意力图。最终将三种注意力图相乘并与原特征图相加,形成增强后的特征表示。此外,文章还展示了如何将TripletAttention集成到预训练的ViT模型中,并修改分类头以适应不同数量的类别。; 适合人群:熟悉深度学习和计算机视觉领域的研究人员和技术开发者,尤其是对注意力机制和Transformer架构有一定了解的人群。; 使用场景及目标:①研究和开发基于Transformer的图像分类模型时,希望引入更强大的注意力机制来提升模型性能;②需要对现有ViT模型进行改进或扩展,特别是在特征提取和分类任务中追求更高精度的应用场景。; 阅读建议:本文涉及较为复杂的深度学习模型和注意力机制实现细节,建议读者具备一定的PyTorch编程基础和Transformer理论知识。在阅读过程中可以结合代码逐步理解各个模块的功能和相互关系,并尝试复现模型以加深理解。
2025-05-06 10:07:59 3KB Pytorch 深度学习 图像处理
1
花卉识别系统是一种利用计算机视觉和机器学习技术来自动识别和分类不同种类花卉的系统。该系统的核心是基于深度学习模型ResNet18的训练网络,通过图像识别技术,用户上传的花卉图片可以被准确分类。 深度学习是一种模拟人脑处理信息的方式,通过构建复杂的神经网络结构来分析数据。在花卉识别系统中,ResNet18作为卷积神经网络(CNN)的一种,擅长处理图像数据。ResNet18通过引入残差学习框架,使得网络能够训练更深的层次结构,从而获得更高效的特征提取能力。 Python是一种广泛使用的高级编程语言,它具有丰富的数据科学和机器学习库,如TensorFlow、Keras和PyTorch等。Python简洁易读的语法和强大的社区支持使其成为开发机器学习模型的理想选择。在花卉识别系统中,Python被用来编写代码、搭建模型以及与用户界面(UI)进行交互。 用户界面(UI)是用户与系统交互的前端部分,它负责展示信息并接收用户的输入。在花卉识别系统中,UI设计需要简洁直观,使得非专业人士也能轻松使用。一个好的UI不仅可以提升用户体验,还能够减少操作错误,提高系统的整体效率。 花卉识别系统的开发过程包括数据收集、预处理、模型训练、评估和部署等多个步骤。需要收集大量不同种类的花卉图片作为训练数据。接下来,对这些图片进行必要的预处理,如缩放、归一化等,以适应模型输入的要求。然后,使用ResNet18模型进行训练,并不断调整参数以优化性能。训练完成后,对模型进行评估,确保其具有良好的识别准确率。将训练好的模型部署到一个用户友好的UI中,供用户使用。 在使用花卉识别系统时,用户只需上传一张花卉图片,系统便会自动处理图片并输出识别结果,告诉用户所上传的花卉种类。这个过程主要依赖于模型的预测能力,而UI则负责展示预测结果和提供用户交互。 花卉识别系统的应用前景非常广泛,它不仅能够帮助植物学家和园艺师进行科学研究和植物养护,还能为普通爱好者提供一个学习和欣赏花卉的平台。此外,随着智能手机和移动应用的普及,基于移动设备的花卉识别应用也将成为可能,进一步扩大了系统的使用范围。 花卉识别系统通过结合深度学习模型、Python编程语言和用户友好的界面设计,为用户提供了一个高效、便捷的花卉分类工具。这个系统在教育、科研和日常生活等多个领域都具有重要的应用价值。
2025-05-04 23:14:35 245.9MB 机器学习 深度学习
1
适用于理工专业的毕业生,毕业答辩时可供参考,叙述详细准确,可以作为自己答辩PPT的参考
2025-05-04 12:51:51 1.03MB 深度学习
1
内容概要:本文介绍了一种改进的EfficientNet模型,主要增加了ContextAnchorAttention(CAA)模块。该模型首先定义了基础组件,如卷积层、批归一化、激活函数、Squeeze-and-Excitation(SE)模块以及倒残差结构(Inverted Residual)。CAA模块通过选择最具代表性的锚点来增强特征表示,具体步骤包括通道缩减、选择锚点、收集锚点特征、计算查询、键、值,并进行注意力机制的加权融合。EfficientNet的构建基于宽度和深度系数,通过调整每个阶段的卷积核大小、输入输出通道数、扩展比例、步长、是否使用SE模块等参数,实现了不同版本的EfficientNet。最后,模型还包括全局平均池化层和分类器。 适合人群:对深度学习有一定了解并希望深入研究图像分类模型的设计与实现的研究人员或工程师。 使用场景及目标:①理解EfficientNet架构及其改进版本的设计思路;②掌握如何通过引入新的注意力机制(如CAA)来提升模型性能;③学习如何使用PyTorch实现高效的神经网络。 阅读建议:由于本文涉及大量代码实现细节和技术背景知识,建议读者具备一定的深度学习理论基础和PyTorch编程经验。同时,在阅读过程中可以尝试复现代码,以便更好地理解各模块的功能和作用。
1
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1