网络安全_卷积神经网络_乘法注意力机制_深度学习_入侵检测算法_特征提取_模型优化_基于KDD99和UNSW-NB15数据集_网络流量分析_异常行为识别_多分类任务_机器学习_数据.zip
2025-05-14 12:34:34 1.04MB
1
这段代码实现了一个基于卷积神经网络(CNN)的糖尿病预测模型,使用PyTorch框架进行训练和评估。代码首先导入必要的库,包括matplotlib用于可视化、numpy和pandas用于数据处理、torch用于深度学习框架搭建,以及sklearn的KFold用于交叉验证。数据从'diabetes.csv'文件中读取,特征和标签分别存储在X和y中,并转换为PyTorch张量。模型的核心是DiabetesCNN类,这是一个1D卷积神经网络,包含两个卷积层(分别使用16和32个滤波器,核大小为3)、最大池化层(核大小为2)、两个全连接层(64和2个神经元)以及ReLU激活函数和Dropout层(0.2的丢弃率)用于防止过拟合。模型的前向传播过程依次通过卷积、池化、展平和全连接层,最终输出二分类结果。 训练过程采用5折交叉验证来评估模型性能,每折训练50个epoch,批量大小为32。训练过程中记录了每个epoch的训练和验证损失及准确率,并保存最佳验证准确率。优化器使用Adam,学习率设为0.001,损失函数为交叉熵损失。训练结束后,代码绘制了训练和验证的损失及准确率曲线,展示模型在不同折上的表现,并计算平均准确率和标准差。结果显示模型在交叉验证中的平均性能,为评估提供了可靠依据。 最后,代码在所有数据上训练最终模型,保存模型参数到'diabetes_cnn_model_final.pth'文件。整个流程展示了从数据加载、模型构建、训练评估到最终模型保存的完整机器学习流程,突出了交叉验证在模型评估中的重要性,以及CNN在结构化数据分类任务中的应用潜力。通过可视化训练曲线,可以直观地观察模型的学习过程和泛化能力,为后续调优提供参考。该实现充分利用了PyTorch的灵活性和GPU加速(如果可用),确保了高效训练。
2025-05-13 13:06:51 352KB
1
深度卷积神经网络.ppt
2025-05-12 15:31:43 24.48MB
1
BP神经网络,全称为Backpropagation Neural Network,是一种在机器学习领域广泛应用的多层前馈神经网络。Python作为现代数据科学的主要编程语言,为实现BP神经网络提供了丰富的库和工具,如TensorFlow、Keras、PyTorch等。在这个主题中,我们将深入探讨BP神经网络的原理以及如何用Python来实现它。 BP神经网络的核心思想是通过反向传播算法来调整网络中的权重和偏置,以最小化预测输出与实际目标之间的误差。它由输入层、隐藏层和输出层组成,其中隐藏层可以有多个。每个神经元都与下一层的所有神经元相连,并通过权重进行信息传递。 在Python中实现BP神经网络,首先需要导入必要的库,例如numpy用于数值计算,matplotlib用于绘图,以及随机数生成库等。下面是一个简单的步骤概述: 1. **初始化网络**:定义网络结构(输入节点数、隐藏层节点数、输出节点数),并随机初始化权重。 2. **前向传播**:给定输入数据,通过激活函数(如Sigmoid或ReLU)计算每个神经元的输出。 3. **计算损失**:比较网络的预测输出与真实目标,计算损失函数(如均方误差MSE)。 4. **反向传播**:从输出层开始,根据损失函数的梯度更新权重,然后逐步向隐藏层传播更新。 5. **迭代优化**:重复步骤2-4,直到满足停止条件(如达到最大迭代次数或损失低于阈值)。 6. **模型评估**:使用测试数据集评估模型的泛化能力。 在Python中,我们可以自定义BP神经网络的类,包含上述功能。例如,我们可以使用`numpy`创建权重矩阵,使用激活函数实现前向传播,然后利用链式法则计算反向传播的梯度。此外,还可以利用优化库如`scipy.optimize`中的`minimize`函数或深度学习框架中的优化器来自动处理权重更新。 例如,以下是一个简单的BP神经网络Python实现的伪代码: ```python import numpy as np class BPNetwork: def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): self.weights_input_hidden = np.random.rand(hidden_nodes, input_nodes) - 0.5 self.weights_hidden_output = np.random.rand(output_nodes, hidden_nodes) - 0.5 self.learning_rate = learning_rate def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def train(self, inputs_list, targets_list): # 前向传播 inputs = np.array(inputs_list, ndmin=2).T hidden_inputs = np.dot(self.weights_input_hidden, inputs) hidden_outputs = self.sigmoid(hidden_inputs) final_inputs = np.dot(self.weights_hidden_output, hidden_outputs) final_outputs = self.sigmoid(final_inputs) # 计算误差 output_errors = targets_list - final_outputs hidden_errors = np.dot(self.weights_hidden_output.T, output_errors) # 反向传播 self.weights_hidden_output += self.learning_rate * np.dot(output_errors * final_outputs * (1 - final_outputs), hidden_outputs.T) self.weights_input_hidden += self.learning_rate * np.dot(hidden_errors * hidden_outputs * (1 - hidden_outputs), inputs.T) def query(self, inputs_list): # 同训练中的前向传播部分 inputs = np.array(inputs_list, ndmin=2).T hidden_inputs = np.dot(self.weights_input_hidden, inputs) hidden_outputs = self.sigmoid(hidden_inputs) final_inputs = np.dot(self.weights_hidden_output, hidden_outputs) final_outputs = self.sigmoid(final_inputs) return final_outputs ``` 以上代码展示了BP神经网络的基础结构,但实际应用中,我们通常会使用更高级的库,如TensorFlow或PyTorch,它们提供自动求导、GPU加速等功能,使得大规模神经网络的训练更为高效。 总结起来,BP神经网络是机器学习中的基本模型,而Python为实现这一模型提供了便利的工具和库。通过理解BP网络的工作原理,以及掌握Python的编程技巧,你可以构建自己的神经网络模型解决各种复杂问题。
2025-05-11 14:30:22 66KB 神经网络 python
1
内容概要:本文详细介绍了如何使用MATLAB和物理信息神经网络(PINN)求解二维泊松方程。首先简述了泊松方程及其重要性,随后深入探讨了PINN的工作原理,即通过将物理方程作为约束加入神经网络训练过程,使网络能够学习到符合物理规律的解。文中提供了完整的MATLAB代码实现,涵盖神经网络结构搭建、训练数据准备、损失函数定义、训练过程及结果可视化等多个环节。此外,还讨论了一些实用技巧,如选择合适的激活函数、调整网络层数、优化训练参数等。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师或学生,特别是那些对数值模拟、物理学建模感兴趣的群体。 使用场景及目标:本方法可用于快速求解各种物理问题中的泊松方程,尤其适合于那些难以用传统方法精确求解的情况。通过这种方式,研究者可以获得更加直观的理解,并探索不同条件下解的变化趋势。 其他说明:尽管PINN相比传统方法有诸多优势,但在某些特定情况下(如存在奇异点),仍需谨慎对待。同时,随着硬件性能提升,未来有望进一步提高求解效率和准确性。
2025-05-10 21:18:41 270KB
1
内容概要:本文介绍了带有注意力机制(SE模块)的U-Net神经网络模型的构建方法。通过定义多个子模块如DoubleConv、Down、Up、OutConv和SELayer,最终组合成完整的UNet_SE模型。DoubleConv用于两次卷积操作并加入批归一化和激活函数;Down模块实现了下采样;Up模块负责上采样并将特征图对齐拼接;SELayer引入了通道间的依赖关系,增强了有效特征的学习能力。整个UNet_SE架构由编码器路径(down1-down4)、解码器路径(up1-up4)以及连接两者的跳跃连接组成,适用于医学图像分割等任务。 适合人群:有一定深度学习基础,特别是熟悉PyTorch框架和卷积神经网络的科研人员或工程师。 使用场景及目标:①研究医学影像或其他领域内的图像分割问题;②探索SE模块对于提高U-Net性能的作用;③学习如何基于PyTorch搭建复杂的深度学习模型。 其他说明:本文档提供了详细的类定义与前向传播过程,并附带了一个简单的测试用例来展示模型输入输出尺寸的关系。建议读者深入理解各个组件的功能,并尝试修改参数以适应不同的应用场景。
2025-05-09 18:28:15 4KB PyTorch 深度学习 卷积神经网络 UNet
1
【阿尔茨海默症与轻度认知功能障碍】阿尔茨海默病(AD)是一种常见的神经系统退行性疾病,表现为渐进性的认知衰退,最终可能导致老年痴呆。轻度认知功能障碍(MCI)则被视为AD的前期阶段,患者认知能力下降但生活能力未受显著影响。早期识别和干预MCI对于延缓或防止其转变为AD至关重要。 【3D卷积神经网络(3DCNN)】3DCNN是深度学习中的一个重要模型,尤其适用于处理三维数据,如医学影像。在本研究中,3DCNN被用来分析MRI图像,自动提取大脑结构特征,以区分AD、MCI和正常对照组。相较于传统的机器学习方法,3DCNN能自动学习和理解图像的复杂模式,无需人工提取特征,提高了诊断效率和准确性。 【MRI图像分析】MRI是一种非侵入性的神经影像技术,能够揭示大脑的结构变化,是AD和MCI研究中常用的技术。通过MRI扫描,可以观察到AD患者的大脑萎缩现象,为诊断提供依据。本研究利用ADNI数据库中的MRI图像,包含了不同时间点的数据,以获取更全面的信息。 【数据预处理】在使用MRI图像进行深度学习之前,通常需要进行数据预处理。这包括将DICOM格式图像转换为NIfTI格式,使用大脑提取算法(BET)去除头骨等非脑组织,将图像配准到标准模板,以及进一步去除小脑和黑背景体素,以标准化图像并降低计算复杂度。 【模型构建与性能】研究设计了一个3DCNN模型,用于AD与CN、AD与MCI的分类。实验结果显示,模型在AD与CN的分类准确率达到96.7%,AUC为0.983,在AD与MCI的分类中准确率为94.7%,AUC为0.966。这些高精度的结果表明3DCNN模型在AD和MCI的诊断中有显著的优势,可能成为辅助诊断的有效工具。 总结来说,本研究利用3DCNN对MRI图像进行分析,成功地提高了AD和MCI的诊断准确率,为临床提供了潜在的自动化诊断支持。这种深度学习方法不仅提高了诊断效率,还有望在未来的医疗实践中发挥更大的作用,帮助更早地识别出阿尔茨海默症和轻度认知功能障碍,以便及时采取干预措施。
2025-05-09 16:53:17 1.57MB
1
基于ADRC自抗扰控制的电机转速控制Simulink仿真 1.一阶ADRC 2.二阶ADRC 3.可添加粒子群优化自抗扰控制参数, ,基于ADRC自抗扰控制技术的电机转速控制及Simulink仿真:一阶与二阶ADRC参数优化与实验研究,基于ADRC自抗扰控制的电机转速控制及其Simulink仿真研究:一阶与二阶ADRC的对比及参数优化方法,核心关键词:一阶ADRC; 二阶ADRC; 电机转速控制; Simulink仿真; 粒子群优化自抗扰控制参数,基于ADRC的电机转速控制Simulink仿真:一阶与二阶对比优化
2025-05-09 16:38:13 1.82MB 开发语言
1
本文的研究主题是基于滑动窗口技术对两类运动想象脑电信号的神经网络识别研究。脑电信号(EEG)是一种生物电活动的直接测量,能够反映大脑的电生理变化,通常被用于脑-机接口(Brain-Computer Interface, BCI)系统的开发。本文特别关注了运动想象EEG信号的分类问题,即如何准确地通过算法区分和识别被试者在想象不同运动时产生的EEG信号。 文章提到使用信号加窗处理技术。信号加窗是一种在信号处理中常用的方法,它通过在一个有限的时间窗口内分析信号,来提取有用特征,抑制噪声和无关信号。滑动窗口是其中一种特殊的加窗方式,它能够在连续的信号上移动,对信号的每一部分都能进行相应的分析处理。窗口宽度是滑动窗口方法的一个重要参数,它决定了信号分析的分辨率和敏感度。窗口太宽可能会忽略信号的细节变化,而窗口太窄又可能会引入过多的噪声。 在传统的信号处理中,滑动平均法是一种常用的降噪和特征提取技术,通过对滑动窗口内的信号取平均值,以简化信号并突出其趋势。这种方法通常用于获取信号的粗略特征,而忽略高频噪声。然而,在某些情况下,滑动平均法可能会损失重要的瞬态信息。 神经网络作为一种强大的机器学习工具,具有出色的综合分析能力和非线性分类能力,已被广泛应用于脑电信号的分析和识别。神经网络通过模拟人脑神经元的工作方式,可以处理大量复杂的数据,并在数据中找出潜在的规律。在BCI系统中,神经网络可以用于训练分类器,将输入的EEG信号映射为特定的控制命令。 在本文的研究中,作者将滑动窗口技术与神经网络结合,试图通过这种方式提高对运动想象EEG信号分类的准确性。研究表明,这种结合方法可以有效地提升信号识别的效果,并且能够产生更稳定的结果。作者还发现,识别效果受到窗口宽度的影响,不同的窗口宽度设置可能会对最终的分类结果产生显著的影响。因此,选择合适的窗口宽度对于优化识别性能具有重要作用。 文章最后提到了研究的进一步方向,即如何将这一方法更好地应用于脑电识别。这可能包括窗口宽度的选择、神经网络结构的设计、以及如何处理和分析EEG数据以获得更准确的分类结果等方面。此外,研究还涉及到如何处理和优化非平稳复杂的生理信号,以及如何利用神经网络的强大功能来提取更为精确和丰富的特征。 这项研究展示了滑动窗口技术与神经网络结合在运动想象EEG信号识别方面的潜力,提供了提高脑电特征提取和分类效果的新思路,对于脑-机接口技术的发展具有重要意义。
2025-05-08 14:06:51 622KB 首发论文
1
深度学习(DL,Deep Learning)是计算机科学机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标-人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。  深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果 【深度学习】 深度学习是机器学习领域的一个重要分支,其核心在于构建深层次的神经网络模型,模拟人脑的学习过程,以实现对复杂数据的高效处理和理解。它旨在通过多层非线性变换,自动从原始数据中提取特征,从而解决模式识别、图像识别、语音识别等挑战性问题。 【卷积神经网络(CNN)】 卷积神经网络是深度学习中的关键架构,特别适合处理图像数据。CNN由卷积层、池化层、全连接层等组成,其中卷积层通过滤波器(或称卷积核)对输入图像进行扫描,提取特征;池化层则用于降低数据维度,减少计算量,同时保持关键信息;全连接层将前面层提取的特征进行分类决策。 【深度学习的应用】 1. **图像识别**:深度学习,尤其是CNN,已经在图像识别任务中取得了显著成就,如图像分类、物体检测、人脸识别等。 2. **语音识别**:深度学习可以用于语音信号的处理和识别,提高语音识别的准确率。 3. **自然语言处理**:在文本理解、语义分析、机器翻译等领域,深度学习通过词嵌入和循环神经网络等技术推动了显著的进步。 4. **推荐系统**:结合用户行为数据,深度学习可以生成个性化推荐,提高用户体验。 5. **自动驾驶**:在交通标志识别、车辆检测等自动驾驶的关键环节,CNN发挥了重要作用。 【本文主要贡献】 1. **改进LeNet-5模型**:通过对LeNet-5经典模型的扩展和调整,构建了不同结构的卷积神经网络模型,用于光学字符识别(OCR),分析比较不同模型的性能。 2. **多列卷积神经网络**:借鉴Adaboost的思想,设计了一种多列CNN模型,用于交通标志识别(TSR)。通过预处理数据和训练,提高了识别准确率。 3. **实验验证**:通过实验证明了CNN在手写数字识别和交通标志识别问题上的有效性,并与其他分类器进行了比较,评估了CNN在实际应用中的性能优势。 【总结】 深度学习和卷积神经网络的结合为解决复杂的人工智能问题提供了强大工具,从图像识别到自然语言理解,再到语音处理,都有广泛应用。本文通过构建和优化CNN模型,展示了其在光学字符识别和交通标志识别中的高效表现,进一步巩固了深度学习在这些领域的地位。随着技术的不断发展,深度学习和CNN在更多领域的潜力将持续被发掘,为人工智能的进步贡献力量。
2025-05-08 00:15:52 5.99MB 人工智能 深度学习 毕业设计
1