非机动车未带安全帽检测数据集是一套完整的图像数据集,主要用于机器学习和深度学习模型的训练和验证,特别是用于计算机视觉领域中的目标检测和识别任务。该数据集采用Pascal VOC格式和YOLO格式,为研究者和开发者提供了便利,便于他们利用这些格式训练模型和进行算法的开发。 VOC格式是一种广泛使用的数据集格式,它由图片文件、XML格式的标注文件和图片信息构成。每张图片都对应一个XML文件,XML文件中详细描述了图片中的对象信息,包括对象的位置和类别等。YOLO格式则是另一种适合实时目标检测系统使用的数据标注格式,它通常包含文本文件,每个文本文件中记录了对应图片中检测到的所有对象的坐标和类别。 本数据集包含了1000张jpg格式的图片,每张图片都包含一个XML文件和一个YOLO格式的文本文件。数据集的图片分辨率统一为1280x720,这有助于保证了数据的一致性和可用性。图片内容涉及了四个类别,分别是:未戴安全帽的行人、戴安全帽的行人、摩托车以及未戴安全帽的非机动车。这些类别分别对应了不同的安全检测需求,例如,保障非机动车骑行者的安全和规范。 在数据集中,每个类别都有一定数量的标注框,用于界定图像中相应类别的目标。例如,“未戴安全帽”的类别框数为1039,而“摩托车”的类别框数为1792。总框数达到4652,这表明数据集对不同场景和目标的覆盖较为全面。 数据集的标注工作使用了名为labelImg的工具完成。labelImg是一个流行的开源标注工具,能够快速地在图片上绘制矩形框,并附上类别标签。这样的标注方式不仅保证了标注的准确性,而且操作简单,适合快速进行数据标注。 需要特别注意的是,数据集的提供者明确表示,使用该数据集所训练出的模型或权重文件的精度无法得到保证。因此,使用该数据集的用户需要自行进行精度的验证和模型调优。 数据集的下载地址也已经提供,这方便用户直接获取资源。数据集的获取和使用过程中,需要注意遵循数据集的使用协议和版权声明,确保合法合规地使用数据。 本数据集是专门针对非机动车安全帽佩戴情况的检测而设计,提供了丰富的标注信息和较高的标注精度。这对于相关领域研究者和开发者的模型训练和研究工作具有非常重要的价值。
2025-06-17 19:56:27 940KB 数据集
1
深入解析VESC无感非线性磁链观测器:源码实践、参考文献指南与仿真模型全解析,《深入解析VESC无感非线性磁链观测器:源码揭秘、参考文献导航与仿真模型实践》,VESC无感非线性磁链观测器+PLL(源码+参考文献+仿真模型) ①源码:VESC的无感非线性观测器代码,并做了简单的调试,可以做到0速启动。 代码注释非常详细,快速入门 ②参考文献(英文+翻译):为VESC非线性观测器的lunwen出处 ③对应的simulinK仿真 大名鼎鼎的VESC里面的观测器。 对学习非线性观磁链测器有很大帮助 图一:为观测位置角度与真实角度波形。 1、《bldc-dev_fw_5_02》为VESC的官方源代码,里面使用了非线性观测器,但是工程很大,功能太多,很难学习,并且使用了操作系统,很难自己使用。 2、《08_ARM_PMSM_磁链观测器》为STM32F405407平台的代码,原本采用VF启动+smo方案。 在该代码框架上,我移植了VESC的无感非线性观测器代码,并做了简单的调试,基本可以0速启动,但带载能力不行,可能还需要进一步调参。 3、《本杰明位置速度观测器》为VESC非线性观测器的lunwen
2025-06-17 10:31:13 6.81MB 数据结构
1
主要介绍了MATLAB中的曲线拟合方法,涵盖多项式拟合、加权最小方差拟合及非线性曲线拟合。在多项式拟合中,函数polyfit()可通过最小二乘法找到合适多项式系数,不同阶次拟合效果不同,阶次最高不超length(x)-1。加权最小方差拟合根据数据准确度赋予不同加权值,更符合拟合初衷,文中还给出其原理及求解公式,并通过实例展示拟合结果。对于非线性曲线拟合,已知输入输出向量及函数关系但未知系数向量时,可利用lsqcurvefit函数求解,同时介绍了该函数多种调用格式,最后通过具体实例阐述其应用及结果。
2025-06-15 19:44:17 2KB matlab 曲线拟合
1
《数字五笔2023:电脑端与手机输入法新体验》 数字五笔2023是一款专为电脑及手机用户设计的输入法软件,它与传统的王码五笔有所不同,提供了全新的输入体验。作为一款现代的五笔字型输入工具,它在保留五笔字型输入高效快捷的基础上,结合了现代技术,使其更加适应数字化时代的使用需求。 五笔字型输入法是基于汉字的结构,将每个汉字拆分为不同的部分,以五种基本笔画(横、竖、撇、捺、折)进行编码,从而实现快速输入。数字五笔2023在此基础上,对编码规则进行了优化,使用户在手机和电脑上都能快速上手,提升输入效率。 对于电脑端,数字五笔2023支持全屏输入,适应各种应用环境,无论是办公文档、电子邮件还是聊天软件,都能提供流畅的输入体验。同时,该输入法还具有智能纠错功能,能够在用户输入错误时自动纠正,减少误打带来的困扰。 在手机端,数字五笔2023充分考虑了小屏幕设备的使用习惯,设计了简洁明了的界面和手势操作,使得在手机上进行五笔输入变得更为便捷。此外,它还支持云同步功能,用户在电脑上录入的词组和自定义短语可以同步到手机,实现跨设备的无缝切换。 文件"szwbTSF2023.exe"是数字五笔2023的安装程序,用户可以通过运行此文件来安装输入法。而"序列号.TXT"则可能包含了软件的激活序列号,用于验证软件的合法性并解锁完整功能。安装过程中,用户需按照提示操作,并正确输入序列号以完成激活步骤。 数字五笔2023的特色不仅体现在其多平台兼容性上,还包括丰富的词库和自定义功能。内置的大量词汇能满足日常输入需求,同时用户还可以根据自己的使用习惯添加个性化词组,让输入更加个性化和高效。 数字五笔2023作为一款非王码五笔的输入法,旨在通过创新技术和优化的用户体验,为电脑和手机用户提供更高效、更便捷的汉字输入方式。无论你是五笔输入法的老手还是新手,都值得一试,感受它所带来的输入速度与便利。
2025-06-14 20:33:48 16.09MB 手机五笔
1
内容概要:本文详细探讨了直齿行星传动系统的平移-扭转耦合非线性动力学特性。首先介绍了直齿行星传动系统的结构特点及其重要性,然后建立了考虑各齿轮副之间啮合相位的非线性动力学模型。接着,通过数值模拟方法,对系统的非线性动力学行为进行了深入研究,包括相图、频谱图、分岔图和庞加莱映射的绘制与分析。最后,讨论了系统参数(如齿轮刚度、阻尼、啮合相位)对非线性动力学特性的影响,强调了合理选择参数以优化传动性能和稳定性的必要性。 适合人群:从事机械工程、动力学研究的专业人士以及相关领域的研究人员和学生。 使用场景及目标:适用于希望深入了解直齿行星传动系统非线性动力学特性的科研工作者和技术人员。目标是帮助他们掌握系统的动态响应和稳定性情况,从而优化设计和提高机械系统的性能。 其他说明:本文不仅提供了理论分析,还通过具体的数值模拟展示了系统的非线性行为,为后续的研究和应用提供了宝贵的参考资料。
2025-06-11 16:29:14 874KB 非线性动力学 参数分析
1
行星齿轮系统是非线性动力学研究中的一个典型实例,它广泛应用于机械工程领域,如汽车传动系统、航空航天设备以及各种工业机械中。行星齿轮传动装置的核心结构包括太阳轮、行星轮和齿圈,其中太阳轮位于中心,行星轮围绕太阳轮转动并同时在齿圈内转动,这种设计使得行星齿轮具有较高的功率密度和传动比的灵活性。 在行星齿轮系统的非线性动力学分析中,研究人员常使用计算机程序来模拟和分析齿轮的动态行为。这些程序能够生成系统的相图、庞加莱图和分叉图等,以此来研究行星齿轮系统的稳定性和动态响应。相图可以展现系统随时间变化的状态,而庞加莱图则用于观察周期运动或准周期运动的特征,分叉图则显示系统参数变化对稳定性的影响,揭示系统从稳定到不稳定或从一种稳定状态跳变到另一种稳定状态的临界点。 行星齿轮非线性程序通过数学建模和数值计算的方法,可以为工程设计提供重要的参考依据,帮助工程师预测和避免潜在的机械故障,提高行星齿轮系统的运行效率和寿命。此外,此类程序对于教育和科研也具有重要的价值,它不仅能够帮助学生和研究者直观地理解非线性动力学理论,还能够促进更深层次的理论研究与技术创新。 在现代工程实践中,行星齿轮非线性程序的应用范围日益广泛,涵盖了动力系统分析、机械故障诊断和优化设计等多个方面。例如,在汽车工业中,行星齿轮非线性程序可以帮助工程师设计更平顺、更高效的自动变速箱;在航空领域,这类程序对于提高涡轮机和发动机性能同样具有重要意义。 行星齿轮非线性程序不仅是一个有力的工具,用于工程设计和故障分析,它还能够推动非线性动力学理论与方法的发展,为现代机械工程领域的进步做出贡献。
2025-06-11 15:58:15 270KB scss
1
"COMSOL建模脆性材料压缩摩擦剪切破坏的损伤模型研究:非局部本构模型应用及案例文献综述",使用COMSOL建立脆性材料压缩摩擦剪切破坏的损伤模型,使用非局部本构模型,包含案例和文献, ,核心关键词:COMSOL; 脆性材料; 压缩摩擦; 剪切破坏; 损伤模型; 非局部本构模型; 案例; 文献,使用非局部本构模型建立脆性材料COMSOL损伤模型:压缩、摩擦与剪切破坏案例及文献研究 在工程学和材料科学领域中,脆性材料的研究是一个重要的课题,尤其在涉及压缩、摩擦及剪切破坏行为时。本文综述了使用COMSOL Multiphysics软件对脆性材料在受到压缩、摩擦和剪切应力作用时的破坏行为进行建模的最新研究进展。本文不仅涵盖了非局部本构模型的应用,还包括了相关的案例和文献研究,旨在深化对脆性材料损伤过程的理解。 非局部本构模型是分析材料损伤行为的一种方法,它考虑了材料内部细观结构的不均匀性及其对宏观力学行为的影响。在脆性材料中,这种模型尤为重要,因为它能够更好地预测材料在多向应力状态下的破坏行为。通过使用COMSOL这种强大的有限元分析软件,研究者能够模拟复杂应力场中的脆性材料破坏过程,并通过非局部本构模型来解释脆性材料的失效机制。 本文所涉及的案例研究包括了不同类型的脆性材料,如玻璃、陶瓷和某些类型的岩石等。通过建模,研究者能够得到压缩摩擦剪切破坏的详细信息,从而为工程设计和材料选择提供理论依据。文献综述部分则对目前该领域的研究成果进行了整理和分析,强调了在模拟脆性材料损伤过程时应注意的关键因素,如材料的微观结构、加载速率、温度条件以及环境因素等。 通过本文的探讨,研究者和工程师可以更加深入地了解脆性材料在受到多种应力作用时的破坏机制,从而在实际应用中采取相应的措施,如改善材料设计、优化加载条件或改进制造工艺等,以提高材料的性能和可靠性。 此外,文中提及的文件列表显示了本研究具有大量的文档资料,包括各种格式如.doc、.html和.txt文件,这些文件可能包含了详细的建模数据、分析结果、技术说明以及案例研究的讨论。其中,“深入探讨脆性材料压缩摩擦剪切破坏的损伤.doc”可能包含关于脆性材料破坏机理的深入分析;“使用建立脆性材料压缩摩擦剪切破坏的损伤模型.doc”可能详细介绍了通过COMSOL建立模型的方法和步骤;“使用建立脆性材料压缩摩擦剪切破坏的损伤模型.html”可能包含了将研究成果发布在网页上的内容,便于在线查阅;图像文件“1.jpg”可能提供了模型的图形化展示;而.txt文件可能是模型计算过程中生成的文本记录或日志文件。这些文件的集合提供了全面的研究支持,有助于其他研究者在该领域内进行进一步的探索和创新。
2025-06-10 15:52:11 37KB ajax
1
内容概要:本文介绍了Pensim仿真软件及其在青霉素发酵过程中的应用,重点探讨了非线性过程故障检测的方法和技术。文中详细描述了Pensim软件的安装步骤、使用方法,并提供了两个Excel文件,分别记录了正常工况和故障1(底物流加速度以10%幅度阶跃降低)下300小时的发酵数据。通过Matlab代码展示了如何读取和分析这些数据,同时附带两篇相关论文,深入探讨了青霉素发酵过程数据集的研究成果。 适合人群:从事生物制药、化工领域的研究人员和技术人员,尤其是对发酵过程和故障检测感兴趣的从业者。 使用场景及目标:适用于需要进行青霉素发酵过程建模、故障诊断和优化的实验室或企业。主要目标是通过仿真和数据分析,提升对非线性故障的理解,改进生产工艺,确保产品质量。 其他说明:Pensim软件不仅可以生成不同类型的故障数据,还可以帮助用户深入了解工业过程中的复杂动态行为。提供的Matlab代码和论文资料有助于进一步开展相关研究和实际应用。
2025-06-07 22:55:06 2.41MB
1
内容概要:本文深入探讨了非隔离双向DC-DC Buck-Boost变换器的工作原理及其在Matlab/Simulink环境下的仿真建模方法。文中详细描述了变换器的主电路和控制电路设计,特别是采用了电压外环电流内环的双闭环控制方式来确保系统在不同工作状态下的稳定性。具体来说,在正向运行时,直流电压源可以为蓄电池提供恒流恒压充电;而在反向运行时,蓄电池能放电以维持直流侧电压稳定。通过一系列仿真实验,验证了所提模型的有效性和可靠性。 适合人群:对电力电子系统有兴趣的研究人员和技术爱好者,尤其是那些希望深入了解非隔离双向DC-DC变换器以及掌握Matlab/Simulink仿真技能的人士。 使用场景及目标:适用于需要评估或改进非隔离双向DC-DC变换器性能的研究项目;也可用于教学环境中帮助学生更好地理解相关理论知识并培养实际操作能力。 其他说明:文中提供的仿真模型不仅有助于理解变换器的基本运作机制,还为进一步探索其性能优化和控制策略奠定了坚实的基础。
2025-06-02 22:12:48 344KB
1
Ceres Solver是一款强大的开源数值最优化库,专为解决非线性最小化问题而设计。在计算机视觉、机器人技术、地球科学以及许多其他领域中,它被广泛应用于参数估计和模型拟合。Ceres Solver 2.0版本的发布带来了最新的功能改进和性能提升,使其在处理大规模和复杂优化问题时更加高效。 该压缩包“Ceres Solver_doc 2.0.zip”包含了官方的PDF文档,这些文档详细阐述了Ceres Solver的核心概念、用法以及实现细节。个人添加的目录标签使得资料的查找和学习更加方便,对于初学者和高级用户来说都是宝贵的资源。 非线性最优化是数学和工程中的一个重要领域,它涉及到寻找函数的局部或全局最小值,当函数不是简单的线性形式时。Ceres Solver支持多种类型的优化问题,包括最小二乘问题、约束优化问题,以及带有黑盒和白盒模型的优化问题。它采用自动微分技术来处理函数的导数,这允许用户使用原始的非模板化的C++代码来定义模型,而无需手动计算导数。 Ceres Solver的主要特点包括: 1. **灵活性**:它可以处理各种形式的优化问题,包括无约束、等式约束和不等式约束问题。 2. **自动微分**:Ceres提供了自动微分的支持,可以计算用户定义的函数的一阶和二阶导数,减轻了程序员的工作负担。 3. **多后端支持**:Ceres支持多种求解器后端,如Levenberg-Marquardt、Trust-Region和Dogleg策略,以及基于CG和LBFGS的线性求解器。 4. **分布式内存并行**:在大规模问题上,Ceres可以利用MPI进行分布式内存并行计算,使得在多台机器上高效求解成为可能。 5. **动态规划**:Ceres也支持动态规划问题的求解,这对于解决一些特定的优化问题非常有用。 6. **易于使用**:Ceres具有简洁的API设计,使用户能够快速构建和求解优化问题。 文档中可能涵盖的内容包括: 1. **安装与配置**:指导用户如何在不同的操作系统和编译环境下安装和配置Ceres Solver。 2. **基础教程**:介绍如何定义问题,设置优化参数,以及如何使用Ceres构建和求解问题。 3. **高级特性**:深入探讨自动微分、线性代数后端的选择、异常处理和调试技巧。 4. **案例研究**:通过实际示例展示Ceres在图像处理、机器人路径规划等问题上的应用。 5. **性能优化**:提供关于如何优化代码以提高求解速度和内存效率的建议。 通过深入学习这些文档,读者不仅可以理解Ceres Solver的基本工作原理,还能掌握如何有效地利用这个工具解决实际的非线性优化问题。无论是学术研究还是工业应用,掌握Ceres Solver都能极大地提升对复杂问题求解的能力。
2025-05-31 20:05:25 2.52MB 非线性最优化
1