内容概要:本文详细介绍了利用Carsim和Simulink联合仿真平台,采用手工搭建的Simulink模块实现汽车质心侧偏角估计的方法。文中主要探讨了两种估计方法:状态观测器法和卡尔曼滤波法。这两种方法均未使用现成的m语言或Simulink自带模块,而是通过自定义模块实现。状态观测器法基于车辆动力学模型,通过输入输出关系重构系统内部状态;卡尔曼滤波法则是一种最优线性递推滤波算法,通过预测和更新步骤实现对质心侧偏角的最优估计。文章展示了在不同速度条件下的估计效果,并讨论了模型的具体配置和调试过程中遇到的问题及其解决方案。 适合人群:从事汽车工程、控制系统设计以及对联合仿真感兴趣的工程师和技术人员。 使用场景及目标:适用于需要深入了解汽车状态估计技术的研究人员和工程师,特别是那些希望掌握状态观测器和卡尔曼滤波在Simulink中的实现方法的人群。目标是在不同速度条件下评估两种方法的性能,为实际应用提供理论依据和技术支持。 其他说明:文章提供了详细的模型配置和调试经验,包括参数选择、模块设计等方面的实用技巧。此外,还附有运行演示视频和参考文献,帮助读者更好地理解和应用所介绍的技术。
2025-06-29 11:58:56 1014KB
1
在信息论与编码领域中,DTC变换,即离散时间复数变换,作为一种有效的信号处理工具,为图像压缩提供了一种新的技术路径。图像压缩算法的目的是减少图像数据的冗余度,从而降低存储空间需求或提高传输效率,而不显著降低图像质量。MATLAB作为一种高性能的数学计算软件,被广泛应用于算法仿真和工程计算中,它提供了强大的矩阵运算能力和丰富的函数库,非常适合进行图像处理和变换算法的研究与开发。 在本资源中,MATLAB被用来实现基于DTC变换的图像压缩算法。该算法通过利用DTC变换将图像从空间域转换到变换域,在变换域中进行系数的量化和编码,以此达到压缩的目的。在仿真实现过程中,首先需要对原始图像进行采样和预处理,以符合变换算法的要求。预处理后的图像数据输入到DTC变换模块,经过一系列数学运算后,图像数据被转换到一个更适合压缩的表示形式。 压缩过程的核心在于对DTC变换后得到的系数进行量化。量化过程需要精心设计,以确保在压缩比和图像质量之间取得平衡。若量化步长过大,则可能会引入较大的量化噪声,影响图像质量;若步长过小,则压缩率不足,达不到压缩的目的。量化后的系数通过编码器进行编码,以进一步减少数据量。编码器可能采用熵编码技术,如哈夫曼编码或算术编码,以实现数据的有效压缩。 最终,通过DTC变换、量化和编码过程,图像数据得到了压缩。压缩后的图像数据可以被存储或传输,需要时通过相应的解码和逆变换过程恢复出原始图像。整个压缩和解压缩的过程是可逆的,保证了图像信息的完整性。 在实际应用中,DTC变换算法的性能与传统算法相比,在某些方面展现出其优势。例如,DTC变换可能在保持较高图像质量的同时提供较高的压缩比,或在相同的压缩比下,提供更优的图像质量。当然,具体性能需要根据实际图像内容和应用场景进行细致的评估和调整。 此外,本资源还将提供关于如何在MATLAB环境下实现该算法的指导。包括MATLAB环境的搭建、所需工具箱的安装、关键代码段的解释以及算法仿真实验的操作步骤等。这将帮助研究人员和工程师们快速上手,进行图像压缩算法的实验和研究。 本资源的提供,旨在通过MATLAB这一强大平台,帮助专业人士深入理解并掌握基于DTC变换的图像压缩算法,进而推动该技术在图像处理领域的应用和发展。
2025-06-29 00:16:02 873KB 信息论与编码 DTC变换 图像压缩
1
我们在具有外部背景场的1 + 1维共形场理论中研究真空稳定性。 我们证明了真空衰减率是由非局部的两种形式给出的。 这两种形式是一个边界项,必须将其添加到有效的拉格朗日输入/输出中。 两种形式均以背景规范场的黎曼-希尔伯特分解及其在重力情况下的新颖“功能”形式表示。
2025-06-28 20:55:59 324KB Open Access
1
基于Matlab Simulink的模型预测控制与PI控制结合的Boost变换器均流响应研究,模型预测控制,基于两相交错并联boost变器。 可完好地实现均流。 模型中包含给定电压跳变和负载突变的响应情况。 模型中0.1s处给定由300变为250,0.3s处由250变为300。 0.2s处负载跃升为两倍的情况。 响应速度快。 有模型预测控制以及PI+模型预测控制两种方式。 后者的稳态误差更小以及响应速度更快 运行环境为matlab simulink ,模型预测控制; 两相交错并联boost变换器; 均流; 电压跳变; 负载突变; 响应速度; PI+模型预测控制; Matlab Simulink。,基于PI+模型预测控制的双相交错并联Boost变换器模型研究
2025-06-28 16:42:10 220KB ajax
1
介绍了一种新的信号处理方法- 基于广义解调的时频分析方法, 并将这种方法应用于调制信号的处理。广义解调时频分析方法采用广义解调将时频分布是曲线的信号变换为时频分布是平行于时间坐标轴的直线的信号, 然后采用最大重叠离散小波包变换( Maximal overlapdiscrete wavelet packet transform, 简称MODWPT) 对广义解调后的信号进行分解, 得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号, 再对各个单分量信号进行逆广义解调, 进一步求出瞬时频率和瞬时幅值, 从而
2025-06-28 16:37:52 1.1MB 工程技术 论文
1
导读:本文介绍了Linux环境下串口通信的设计方法和步骤,并介绍了ARM9微处理器s3c2440在Linux下和C8051Fxxx系列单片机进行串行通信的设计方法,给出了硬件连接和通信程序流程图。该方法可靠、实用,适用于大多数LinuxARM和单片机串口通信的场合。   0 引言   数据采集系统中由于单片机侧重于控制,数据处理能力较弱,对采集的数据进行运算处理比较繁琐,如果通过串口与上位机通信,利用上位机强大的数据处理能力和友好的控制界面对数据进行处理和显示则可以提高设计效率。串口通信以其简单的硬件连接,成熟的通信协议,成为上下位机之间通信的首选。移植了Linux 操作系统的s3c244
2025-06-28 13:45:36 189KB 嵌入式系统/ARM技术
1
摘要:AT93C46/56/66是Atmel公司生产的低功耗、低电压、电可擦除、可编程只读存储器,采用CMOS工艺技术制造并带有3线串行接口,其容量分别为1kB/4kB,可重复写100万次,数据可保存100年以上。文中介绍了该存储器的引脚功能和指令时序,给出了AT93C46/56/66和单片机的接口应用电路和软件程序。 关键词:EEPROM 存储器 接口应用 程序 AT93C46/56/6616位单片机以其适于高速控制场合及功能多等优点已在工业控制领域中占领了一定的市场。由于EEPROM能在不脱离系统的情况下修改其存储单元中的内容,故在16位单片机中的应用愈来愈广泛。本文结合16位机的特 AT93C46/56/66是由Atmel公司设计生产的串行EEPROM(电可擦除可编程只读存储器),适用于低功耗和低电压的应用环境。这些存储器采用CMOS工艺制造,拥有3线串行接口,分别提供1kB、4kB的存储容量。它们支持超过100万次的写入操作,且数据可保持100年以上,这使得它们成为16位单片机系统中理想的存储解决方案。 在16位单片机和数字信号处理器(DSP)的应用中,由于EEPROM可以在系统运行状态下进行内容修改,因此在存储配置参数、程序代码或临时数据等方面有广泛应用。AT93C系列的3线串行接口使得它们占用的电路板空间小,连线简洁,特别适合于资源有限的嵌入式系统。 这些芯片的主要引脚包括: - CS(Chip Select):片选信号,高电平有效,低电平则进入等待模式。 - CLK(Serial Clock):串行时钟,上升沿触发数据的输入和输出。 - DI(Data Input):串行数据输入端。 - DO(Data Output):串行数据输出端,用于读取数据或提供忙/闲信息。 - VSS:接地。 - VCC:电源输入,通常为+5V。 - ORG:存储器构造配置端,决定输出数据位宽。 - NC:未使用的引脚,不连接。 AT93C46/56/66的操作指令包括读取(READ)、写允许(EWEN)、擦除(ERASE)、写入(WRITE)、全擦除(ERAL)、全写入(WRAL)和写禁止(EWDS)。每条指令都有特定的时序要求,例如在执行写入指令时,需要先发送地址,再发送数据,并确保CS信号在适当时间保持低电平以确保数据正确传输。 在实际应用中,这些EEPROM常与单片机通过串行接口连接,通过编写适当的控制程序,实现对存储器的读写操作。例如,使用EWEN指令打开写保护,允许写入操作;然后使用ERASE指令擦除特定地址的数据;接着使用WRITE指令写入新的数据;可以使用EWDS指令关闭写保护,以防止意外修改。 16位单片机因其高速处理能力和多功能性,在工业控制领域占据了一席之地。与之配合的AT93C系列EEPROM则提供了灵活的存储选项,可以存储程序代码、配置信息或其他关键数据,而无需额外的编程设备。这种灵活性和可靠性使得它们在设计多功能、高精度测试仪器和其他嵌入式系统时具有显著优势。 AT93C46/56/66串行EEPROM是16位单片机和DSP系统的理想选择,其低功耗、小体积和简单接口设计满足了现代电子设备对高效能和紧凑性的需求。理解并掌握这些存储器的工作原理、引脚功能和指令时序,对于开发基于这些器件的嵌入式系统至关重要。
2025-06-28 10:04:33 84KB 单片机与DSP
1
在Windows编程领域,MFC(Microsoft Foundation Classes)是微软提供的一套C++库,用于简化Win32 API的使用。MFC扩展DLL是一种特殊的动态链接库(DLL),它允许我们导出MFC类,以便其他应用程序或DLL可以使用。本文将深入探讨如何一步步实现MFC扩展DLL中导出类和对话框。 我们需要了解MFC扩展DLL与常规DLL的区别。常规DLL通常不包含MFC的运行时环境,而MFC扩展DLL则包含了MFC的类库,这使得它可以直接使用MFC类,并且可以导出这些类供其他MFC应用程序使用。 **创建MFC扩展DLL** 1. **新建项目**:在Visual Studio中,选择“文件”->“新建”->“项目”,然后在模板中选择“MFC”类别下的“MFC扩展DLL”。给项目命名,例如“TestExportClass”。 2. **配置项目设置**:在项目属性中,确保“配置类型”设置为“动态库 (.dll)”,并且在“MFC支持”下选择“使用MFC作为共享DLL”。 3. **添加导出类**:在DLL中,你需要创建一个或多个类并导出它们。导出类的方法是在类定义前加上`DECLARE_DYNAMIC`和`IMPLEMENT_DYNAMIC`宏。例如,创建一个名为`CExportClass`的类: ```cpp class DECLARE_DYNAMIC(CExportClass) { public: CExportClass(); virtual ~CExportClass(); // 添加你的成员函数 void ExportedFunction(); }; ``` 然后,在实现文件中,使用`IMPLEMENT_DYNAMIC`宏: ```cpp CExportClass::CExportClass() {} CExportClass::~CExportClass() {} void CExportClass::ExportedFunction() { // 实现你的功能 } ``` **导出类的成员函数**:为了使类的成员函数在外部可调用,需要使用`AFX_DECL_DLL_EXPORT`或`AFX_DECL_DLL_IMPORT`宏。例如,对于`ExportedFunction`,添加`AFX_DECL_DLL_EXPORT`: ```cpp AFX_DECL_DLL_EXPORT void CExportClass::ExportedFunction() ``` **创建导出对话框**:MFC扩展DLL还可以导出对话框。创建一个基于`CDialog`的派生类,如`CMyDialog`。然后,像导出类一样,导出对话框的创建函数: ```cpp AFX_DECL_DLL_EXPORT CMyDialog* CreateMyDialog() { return new CMyDialog(); } ``` **使用DLL**:在使用MFC扩展DLL的应用程序中,需要包含DLL的头文件,并链接到相应的库。使用`AFX_MODULE_ID`来获取DLL的模块ID,以便正确地初始化MFC。 ```cpp extern AFX_MODULE_ID moduleID; // 获取模块ID AFX_MODULE_ID moduleID = AfxGetModuleState()->m_pModuleInfo->m_moduleID; // 使用DLL CExportClass* pExportClass = new CExportClass(); pExportClass->ExportedFunction(); // 创建并显示对话框 CMyDialog* pDialog = CreateMyDialog(); pDialog->DoModal(); ``` **编译和测试**:确保编译并链接DLL项目,然后将其复制到使用它的应用程序的可执行文件同一目录下。运行应用程序,通过调用DLL的导出函数和对话框,检查功能是否正常工作。 以上就是实现MFC扩展DLL中导出类和对话框的详细步骤。在实际开发中,可能还需要处理线程安全问题,考虑异常处理,以及根据需求优化性能。理解MFC扩展DLL的原理和使用方法,能帮助开发者更好地构建可复用和模块化的软件组件。
2025-06-27 13:14:29 19KB MFC扩展DLL
1
《游戏引擎架构》是一本深度探讨游戏开发核心技术的权威书籍,中文版与英文版的结合为读者提供了双语学习的机会,特别适合对游戏开发有深厚兴趣或者正在从事相关工作的专业人士。高清非扫描版保证了阅读体验,使得内容更加清晰易懂。 游戏引擎是构建游戏的基础框架,它整合了渲染引擎、物理引擎、音频引擎、脚本系统、碰撞检测、资源管理系统等众多模块,以提供开发者一个高效、便捷的游戏开发环境。《游戏引擎架构》详细阐述了这些核心组件的设计与实现,帮助读者理解游戏引擎背后的复杂性。 1. **渲染引擎**:这部分讲解了游戏中的图形渲染技术,包括3D模型、纹理、光照、阴影、视锥体剔除、渲染管线以及现代图形API如DirectX和OpenGL的使用。对于如何在有限的计算资源下创造出逼真的游戏世界,渲染引擎的优化策略也是重点讨论内容。 2. **物理引擎**:物理引擎让游戏中的物体运动符合现实世界的物理规则,如重力、碰撞检测和刚体动力学。书中会介绍Box2D和Bullet等物理库的应用,并讨论如何处理复杂的碰撞问题和模拟真实的物理行为。 3. **音频引擎**:音频引擎管理游戏中的音效和音乐播放,涉及音频格式、混音、空间化和实时音频处理。书中会解释如何创建沉浸式的声音环境,提高游戏的代入感。 4. **脚本系统**:脚本语言让非程序员也能参与到游戏逻辑的编写中,如使用Lua或Python。书中有介绍如何集成脚本系统到引擎中,以及如何设计安全、高效的接口供游戏设计师使用。 5. **资源管理系统**:有效地加载、存储和管理游戏资源(如模型、纹理、音频文件)是优化游戏性能的关键。这部分会涵盖内存管理、数据压缩、异步加载和流式技术。 6. **网络编程**:多人在线游戏需要强大的网络支持,涉及同步、延迟补偿、错误检测和修复等。书中会讲解如何构建可靠的多人游戏网络架构。 7. **多平台支持**:游戏引擎需要跨平台运行,包括PC、移动设备和游戏主机。这部分将讨论不同平台的特性和适配策略。 8. **工具链**:游戏开发过程中,编辑器、关卡设计工具、调试器等工具的构建也是必不可少的。书中会讲解如何设计这些工具,以提高开发效率。 通过阅读《游戏引擎架构》,读者不仅可以掌握游戏开发的基本原理,还能了解到业界最佳实践,这对于提升个人技能或团队项目开发都有着极大的帮助。高清非扫描版使得阅读过程更为愉快,无论是初学者还是经验丰富的开发者,都能从中受益匪浅。
2025-06-27 12:09:28 12.53MB 游戏引擎架构 Game Engine Architecture
1
在Linux内核中,按键驱动是用来处理硬件按键的输入事件,包括按键的按下和释放等。本文主要讨论了基于RK3588平台的按键驱动,涉及到两种类型的按键驱动:GPIO按键驱动和ADC按键驱动。 我们来看ADC按键驱动。在`adc-keys.c`文件中,`probe`函数是初始化过程的关键。它从设备树(DTS)中获取ADC的参考电压,并将其转换为mV单位。接着,驱动会读取所有ADC按键的配置,包括它们在按下时对应的电压值和键值。驱动会设置输入设备参数,创建一个循环任务,用于定期检测按键状态。循环任务会读取ADC采样的电压值,根据比较结果来判断按键是否被按下。如果按键的电压值与设定的阈值接近,就会报告按键的按下或释放事件。 然后,我们转向GPIO按键驱动。在`gpio_keys.c`文件中,`probe`函数同样负责初始化。它从DTS中读取GPIO按键的属性,如自动重复、键值、标签、中断号等。这里还会检查按键是否支持唤醒系统以及是否可禁用。防抖时间(debounce_interval)也在这里设置。接下来,驱动会为每个GPIO按键分配参数,包括GPIO口、极性、防抖机制、中断号等。中断服务程序和中断触发类型会被设置好,最后注册input设备并可能设置其唤醒功能。 当GPIO按键被按下时,会触发中断函数`gpio_keys_gpio_isr`。这个函数会判断按键是否能唤醒系统,如果是并在系统休眠时,它会触发唤醒事件。之后,会报告按键按下事件并启动延时任务。延时任务`gpio_keys_gpio_work_func`会在特定延迟后执行,读取GPIO电平并上报按键事件。 RK3588平台的按键驱动分为ADC和GPIO两种,它们都通过Linux内核的input子系统来处理按键事件。ADC驱动依赖于ADC控制器来检测电压变化,而GPIO驱动则直接监测GPIO引脚的电平状态。两者都通过中断服务程序和延时任务来确保事件的准确报告,从而为上层应用提供可靠的按键输入信息。
2025-06-27 10:28:24 743KB RK3588
1