内容概要:本文介绍了一种改进的视觉Transformer(ViT)模型,重点在于引入了三重注意力机制(TripletAttention)。TripletAttention模块结合了通道注意力、高度注意力和宽度注意力,通过自适应池化和多层感知机(MLP)来增强特征表达能力。具体实现上,首先对输入特征图进行全局平均池化和最大池化操作,然后通过MLP生成通道注意力图;同时,分别对特征图的高度和宽度维度进行压缩和恢复,生成高度和宽度注意力图。最终将三种注意力图相乘并与原特征图相加,形成增强后的特征表示。此外,文章还展示了如何将TripletAttention集成到预训练的ViT模型中,并修改分类头以适应不同数量的类别。; 适合人群:熟悉深度学习和计算机视觉领域的研究人员和技术开发者,尤其是对注意力机制和Transformer架构有一定了解的人群。; 使用场景及目标:①研究和开发基于Transformer的图像分类模型时,希望引入更强大的注意力机制来提升模型性能;②需要对现有ViT模型进行改进或扩展,特别是在特征提取和分类任务中追求更高精度的应用场景。; 阅读建议:本文涉及较为复杂的深度学习模型和注意力机制实现细节,建议读者具备一定的PyTorch编程基础和Transformer理论知识。在阅读过程中可以结合代码逐步理解各个模块的功能和相互关系,并尝试复现模型以加深理解。
2025-05-06 10:07:59 3KB Pytorch 深度学习 图像处理
1
该文件为BERT标题分类相关资源,包含文本分类数据集、本地读取所需要的预训练模型以及BERT标题分类源代码。 目录结构如下: BERT标题分类相关资源 │ academy_titles.txt │ job_titles.txt │ 使用Transformers的BERT模型做帖子标题分类.ipynb └─bert-base-chinese config.json pytorch_model.bin tokenizer.json tokenizer_config.json vocab.txt
2025-05-05 18:34:08 364.28MB bert 数据集 文本分类 自然语言处理
1
内容概要:本文介绍了一种改进的EfficientNet模型,主要增加了ContextAnchorAttention(CAA)模块。该模型首先定义了基础组件,如卷积层、批归一化、激活函数、Squeeze-and-Excitation(SE)模块以及倒残差结构(Inverted Residual)。CAA模块通过选择最具代表性的锚点来增强特征表示,具体步骤包括通道缩减、选择锚点、收集锚点特征、计算查询、键、值,并进行注意力机制的加权融合。EfficientNet的构建基于宽度和深度系数,通过调整每个阶段的卷积核大小、输入输出通道数、扩展比例、步长、是否使用SE模块等参数,实现了不同版本的EfficientNet。最后,模型还包括全局平均池化层和分类器。 适合人群:对深度学习有一定了解并希望深入研究图像分类模型的设计与实现的研究人员或工程师。 使用场景及目标:①理解EfficientNet架构及其改进版本的设计思路;②掌握如何通过引入新的注意力机制(如CAA)来提升模型性能;③学习如何使用PyTorch实现高效的神经网络。 阅读建议:由于本文涉及大量代码实现细节和技术背景知识,建议读者具备一定的深度学习理论基础和PyTorch编程经验。同时,在阅读过程中可以尝试复现代码,以便更好地理解各模块的功能和作用。
1
基于粒子群优化算法PSO优化SVM分类的Matlab代码实现:红酒数据集多分类实验,基于粒子群优化算法PSO优化SVM分类的红酒数据集Matlab代码实现与实验分析,粒子群优化算法PSO优化SVM分类—Matlab代码 PSO- SVM代码采用红酒数据集进行分类实验,数据格式为Excel套数据运行即可 输入的特征指标不限,多分类 可以替数据集,Matlab程序中设定相应的数据读取范围即可 提供三种可供选择的适应度函数设计方案 直接运行PSO_SVM.m文件即可 ,PSO; SVM分类; Matlab代码; 红酒数据集; 特征指标; 多分类; 适应度函数设计; PSO_SVM.m文件,PSO算法优化SVM分类—红酒数据集Matlab代码
2025-05-01 18:28:51 2.54MB 开发语言
1
马尔可夫转移场:一维时序信号至二维图像的转换与故障识别分类技术,马尔可夫转移场,将一维时序信号变为二维图像,而后便于使用各种图像分类的先进技术。 适用于轴承故障信号转化,电能质量扰动识别,对一维时序信号进行变,以便后续故障识别识别 诊断 分类等。 直接替数据就可以,使用EXCEL表格直接导入,不需要对程序大幅修改。 程序内有详细注释,便于理解程序运行。 只程序 ,马尔可夫转移场; 一维时序信号变换; 二维图像转换; 图像分类技术; 轴承故障信号转化; 电能质量扰动识别; EXCEL表格导入; 程序内详细注释。,基于马尔可夫转移场的时序信号二维化处理程序
2025-04-30 21:30:38 151KB
1
内容概要:本文档是关于使用ResNet-50网络实现图像情感分类的深度学习实验报告。首先介绍了ResNet网络的特点及其优越性,特别是在图像识别领域的优势,主要包括解决梯度消失和梯度爆炸问题、信息传输完整性、特征学习能力等方面。文档详细描述了实验的设计过程,从理论基础到程序实现再到模型训练、优化、评估和最终的数据可视化等多个环节。重点展示了使用ResNet-50网络在处理图像情感分类问题上的优越性,并进行了详细的性能评估和技术细节探讨。 实验采用了SGD优化器,在ResNet的基础上做了超参数调节、预训练模型微调等工作,通过大量的迭代使最终的平均正确率达到45.2%, 最高达到52.1%。同时也指出了当前实验中存在的局限性及未来可能的方向,包括但不限于数据增强、细化调参以及探索更深的网络模型。 适合人群:具有一定的深度学习基础知识,尤其熟悉卷积神经网络(CNN)的从业者和研究者,或者想要深入了解图像分类特别是情感分类领域的研究人员。 使用场景及目标:本文适合于那些希望采用类似技术栈进行图像识别项目的团队和个人开发者;对于希望提高现有图像识别系统的准确性和效率的研究人员同样有价值。具体来说,该资源可用于理解和实践如何使用ResNet等先进CNN模型解决实际中的图像情感分类任务,通过学习代码实现和实验配置,帮助使用者建立自己的高质量分类模型。 阅读建议:读者应在了解基础的深度学习概念基础上阅读此文,重点理解ResNet的基本架构及其实现方式,以及各部分(比如Bottleneck block、残差连接)的具体作用机制。实验部分的内容可以帮助读者掌握数据准备、模型选择与调整的方法,同时也可以从中学习到有效的超参数调节技巧和其他优化策略。
2025-04-29 22:36:16 2.9MB 深度学习 ResNet 图像分类 PyTorch
1
基于CNN的文本分类代码包,​CNN(Convolutional Neural Network)即卷积神经网络,本质上,CNN就是一个多层感知机,只不过采用了局部连接和共享权值的方式减少了参数的数量,使得模型更易于训练并减轻过拟合。在文本分类中,参考论文Convolutional Neural Networks for Sentence Classification https://arxiv.org/abs/1408.5882中的模型 ​对于单词的嵌入向量,有四种处理方法 1. 使用随机嵌入并在训练时进行更新; 2. 使用已有的嵌入向量,在训练时不作为参数更新; 3. 使用已有的嵌入向量,在训练时作为参数更新; 4. 结合2和3,将单词嵌入到两个通道的嵌入向量中,其中一个嵌入向量为固有属性,另一个嵌入向量作为参数进行更新。
2025-04-29 21:46:01 18.86MB nlp 卷积神经网络 机器学习
1
基于GADF-CNN-LSTM模型的齿轮箱故障诊断研究:从原始振动信号到多级分类与样本分布可视化,基于GADF-CNN-LSTM模型的齿轮箱故障诊断系统:东南大学数据集的Matlab实现与可视化分析,基于GADF-CNN-LSTM对齿轮箱的故障诊断 matlab代码 数据采用的是东南大学齿轮箱数据 该模型进行故障诊断的具体步骤如下: 1)通过GADF将原始的振动信号转化为时频图; 2)通过CNN-LSTM完成多级分类任务; 3)利用T-SNE实现样本分布可视化。 ,基于GADF-CNN-LSTM的齿轮箱故障诊断; 东南大学齿轮箱数据; 原始振动信号转化; 多级分类任务; T-SNE样本分布可视化。,基于GADF-CNN-LSTM的齿轮箱故障诊断方法及其Matlab实现
2025-04-29 09:58:45 1.44MB sass
1
电信诈骗中文数据集-8分类
2025-04-28 10:10:43 2.83MB 中文数据集 文本分类
1
这个模型是一个基于MLP的简单文本情绪分类模型,使用了线性层、激活函数和Softmax函数构建网络结构。通过交叉熵损失函数进行训练,并使用Adam优化算法自动调节学习率。训练过程中记录了损失值,并在每个3000步后对校验集进行验证。该模型可以用于对文本情绪进行分类,并评估模型的准确率和损失值。其中包含数据收集、数据预处理、构建模型、训练模型、测试模型、观察模型表现、保存模型
2025-04-27 20:17:51 595KB
1