这是一套基于DeepSeek大模型API开发的多智能体协作系统源码,模拟团队协作场景解决复杂技术问题。系统包含Java后端和React前端,实现了智能专家选择、三阶段协作流程和实时交互体验。六位领域专家(架构师、Java专家、前端专家等)协同工作,为用户提供全面专业的解决方案。代码结构清晰,注释详尽,完美展示大模型应用开发最佳实践。适合AI应用开发者学习和二次开发。 后面会有blog介绍,敬请关注博主系列专栏: https://blog.csdn.net/pte_moon/category_12964355.html
2025-05-20 16:18:58 238KB Java全栈
1
基于STM32的智能鞋控制系统的设计与试验,徐慧,唐火红,现有电热鞋温控系统采用传统比例积分微分(proportion, integration, differentiation, PID)控制算法,温湿度控制精度低,无法满足消费者对鞋子
2025-05-20 15:14:53 585KB 首发论文
1
《AI基于机器学习的股票数据挖掘分析系统的设计与实现》这篇论文主要探讨了如何利用人工智能技术,特别是机器学习算法,来对股票市场进行深度的数据挖掘和分析。这是一份涵盖论文说明书、任务书和开题报告的综合研究,旨在为金融商贸领域的决策者提供科学的工具和方法。 在论文中,作者首先介绍了人工智能在金融领域的应用背景,强调了在海量股票数据中寻找规律和预测趋势的重要性。接着,论文深入讨论了机器学习的基础理论,包括监督学习、无监督学习和强化学习等不同类型的算法,如线性回归、决策树、随机森林、支持向量机以及神经网络等,并分析了它们在股票数据分析中的适用场景。 数据挖掘是该系统的核心部分,通过对历史股票交易数据的预处理、特征工程和模式识别,提取出有价值的特征。这些特征可能包括股票的价格、交易量、公司基本面信息等,甚至可能涉及宏观经济指标。作者可能探讨了如何构建有效的特征组合,以提高模型的预测精度。 在系统设计与实现环节,作者可能会详细描述数据获取和清洗的过程,以及如何构建一个能够实时更新和学习的模型。这可能涉及到大数据处理技术,如Hadoop或Spark,以及云计算平台的运用,以实现高效的数据处理和模型训练。同时,可能还会介绍系统的架构设计,包括前端用户界面和后端数据分析模块的交互逻辑。 在论文的实证分析部分,作者会利用特定的股票数据集进行模型验证,对比不同机器学习算法的性能,并可能提出优化策略。此外,通过案例研究,展示系统如何帮助投资者做出更明智的决策,例如,通过预测股票价格波动,识别投资机会,或者预警潜在风险。 毕业设计的整个过程不仅锻炼了作者的科研能力和编程技能,也展示了将理论知识应用于实际问题的能力。尽管论文可能无法提供直接的投资建议,但其方法论和思路对于理解人工智能在金融领域的应用具有重要的参考价值。 这篇论文和相关文档为读者提供了深入理解和构建AI驱动的股票数据挖掘分析系统的基础,有助于金融商贸领域专业人士了解如何利用机器学习提升决策效率,同时也为后续研究提供了宝贵的思路和参考。
1
电路基本原理就是通过红外接收头收集红外信号,当有红外信号进来时,单片机AT89C2051执行中断并对采集到的红外信号进行解码,并从串口送到PC,PC软件Girder收到串口发来的字符再根据定义做出相应的命令操作。 AT89C2051遥控接收器电路设计原理主要涉及了几个关键的硬件和软件组件,以及它们如何协同工作来实现红外遥控的功能。在这个设计中,红外接收头是首要的输入设备,它能捕捉到由遥控器发射的红外信号。红外接收头通常包含一个光敏元件,如光二极管,当接收到红外光脉冲时,会将其转换为电信号。 AT89C2051是一款低功耗、高性能的8位微控制器,属于MCS-51系列。它在该系统中扮演着核心角色,处理从红外接收头接收的信号。当接收到信号时,AT89C2051通过中断机制触发解码过程。中断是微控制器处理外部事件的一种高效方式,使得程序可以在不被打断的情况下执行主要任务,只在必要时响应特定事件。 红外信号的解码过程涉及到对信号的分析,通常包括对脉冲宽度和时间间隔的测量,以确定遥控器按键的编码。解码后的数据以字符形式通过串行接口(Serial Port)传输。AT89C2051内置了串行通信功能,支持UART(通用异步收发传输器),可以将解码后的数据发送到与之连接的设备。 在本例中,接收的数据被送至PC,通过串口连接。PC端运行的软件Girder负责解析这些字符并根据预设的规则执行相应的操作。Girder可能是一个自定义的或第三方的软件,它可以识别特定的字符序列,并将其映射到特定的系统命令,如控制媒体播放、窗口操作等。 为了简化电路设计,电路中还包含了一个巧妙的串口窃电电路,使得整个设备无需额外的电源,只需插入PC的串口即可工作。这种设计利用了串口提供的电源,减少了硬件的复杂性和成本。在电路板启动并成功运行Girder后,指示灯LED1的闪烁表示系统已就绪。关闭Girder时,电路板的电源也会随之切断,指示灯熄灭,确保了能源的有效管理。 AT89C2051遥控接收器电路的设计结合了硬件和软件的智慧,通过红外接收、微控制器处理、串口通信以及PC端软件的交互,实现了便捷的遥控操作。这一设计对于理解嵌入式系统、串行通信以及红外遥控技术有着重要的实践意义,同时也展示了如何在有限的资源下实现功能丰富的电子设备。
2025-05-20 14:16:57 105KB 智能硬件 串口通信 AT89C2051 电路设计
1
这是一个PCB的工程,是我在参加2019年第六届全国大学生工程训练竞赛国赛时的电路板,板子的版本号2.8 包含一个 4路MC33886 电机驱动的部分 和 两个 Stm32F407的部分 以及两个 XL4015的驱动电路 该电路板是我耗时几个月打磨出来的,还望读者能有所收获! 代码会在后续整理上传
2025-05-19 22:02:04 24.58MB
1
英文版的.包含Html格式的原书和例子及源代码.其中状态机一章节的曾被老师用来教学,所以印象还不错.里面的小Demo比较有意思.
2025-05-19 16:17:53 12.81MB 人工智能 英文书籍
1
在这个CUG智能优化课设中,学生通过Python编程语言实现了著名的多目标优化算法NSGA-Ⅱ(非支配排序遗传算法第二代),以此来解决CEC-2021(国际计算智能挑战赛)中的复杂优化问题。NSGA-Ⅱ是一种在遗传算法基础上发展起来的高效优化工具,尤其适用于解决多目标优化问题,这些问题通常涉及到多个相互冲突的目标函数,需要找到一组最优解,而非单一的全局最优解。 **NSGA-Ⅱ算法详解** NSGA-Ⅱ的核心思想是基于非支配排序和拥挤距离的概念来寻找帕累托前沿,这是多目标优化问题中的理想解集。算法通过随机生成初始种群,然后进行以下步骤: 1. **选择操作**:NSGA-Ⅱ采用“锦标赛选择”策略,通过比较个体间的适应度值来决定保留哪些个体。适应度值是根据个体在所有目标函数上的表现计算得出的。 2. **交叉操作**:通过“均匀交叉”或“部分匹配交叉”等策略,将两个父代个体的部分基因片段交换,生成新的子代。 3. **变异操作**:应用“位翻转变异”或“区间变异”等方法,对个体的某些基因进行随机改变,增加种群多样性。 4. **非支配排序**:对所有个体进行两两比较,根据是否被其他个体支配,分为不同层级的 fronts。第一层front的个体是最优的,后面的front依次次优。 5. **拥挤距离计算**:在相同层级的front中,为了保持种群多样性,引入拥挤距离指标,衡量个体在目标空间中的分布情况。 6. **精英保留策略**:确保最优解能够传递到下一代,避免优良解的丢失。 7. **新一代种群构建**:结合非支配排序结果和拥挤距离,采用快速解拥挤策略选择最优子代进入下一代种群。 8. **迭代与终止条件**:重复上述步骤,直到达到预设的迭代次数或满足其他停止条件。 **CEC-2021竞赛介绍** CEC(Competition on Evolutionary Computation)是由国际计算智能学会(IEEE Computational Intelligence Society)组织的年度挑战赛,旨在推动计算智能领域的研究和应用。CEC-2021可能包含多个复杂优化问题,如多目标优化、单目标优化、动态优化等,这些问题通常具有高维度、非线性、多模态和不连续的特性。参赛者需要设计和实现优化算法,对这些问题进行求解,评估算法的性能和效率。 通过这个课设,学生不仅能够深入理解NSGA-Ⅱ算法的原理和实现细节,还能通过实际问题的解决,提高解决复杂优化问题的能力。同时,这也为他们提供了参与高水平竞赛的机会,进一步提升其在计算智能领域的研究水平。
2025-05-19 15:35:46 969KB python
1
1.项目基于 MNIST 数据集,使用 VGG-19 网络模型,将图像进行风格迁移,实现去噪功能。 2.项目运行环境:Python 和 TensorFlow 运行环境。需要 Python 3.6 及以上配置,使用conda安装环境 conda create -n tensorflow python=3.8.10 3.项目包括 3 个模块:图片处理、模型构造、迭代更新。项目用到的网络模型为预训练好的VGG-19,使用过程中抛弃最后三个全连接层,取出前面各层的参数,构建网络结构。损失函数,由内容损失、风格损失构成。内容损失采用 L2范数损失,风格损失用 Gram 矩阵计算各通道的相关性,以便更好的捕捉笔触、纹理等细节信息,利用 adam 梯度下降算法进行优化。 4.准确率评估:对于图像风格迁移这种模糊算法,并没有客观的评判标准。损失函数可以反映出一部分情况,更多的是人为观察运行结果。经测试,经过 40 次迭代风格迁移已很明显,可根据自身需求,合理调节迭代次数。
2025-05-19 13:15:43 522.16MB tensorflow 深度学习 机器学习 人工智能
1
C++ OpenCV高级模板匹配框架源码:多形状ROI创建与并行加速定位计数分类系统,基于C++ OpenCV框架的智能模板匹配系统源码,支持多形状ROI创建与并行加速处理,C++ OpenCV模板匹配框架源码,包括有方向矩形ROI、圆形ROI、环形ROI创建模板,画笔可以对模板区域涂抹实现屏蔽或选取,c++ opencv开发的基于形状多模板多目标的模板匹配源码,可实现定位,计数,分类等等,定位精度可达亚像素级别,运行速度采用并行加速。 开发工具:qt(msvc2015) + opencv4.6,工具自备 ,C++; OpenCV; 模板匹配; 方向矩形ROI; 圆形ROI; 环形ROI; 画笔涂抹; 屏蔽选取; 定位精度; 亚像素级别; 并行加速; Qt(MSVC2015); OpenCV4.6。,基于OpenCV与Qt框架的亚像素级模板匹配框架源码
2025-05-19 10:35:37 1.63MB istio
1
内容概要:本文介绍了DeepSeek公司及其大模型在数据分析领域的应用。DeepSeek是一家由幻方量化孕育而生的创新型科技公司,专注于开发大语言模型(LLM)。公司自2023年成立以来迅速崛起,发布了多个版本的大模型,如DeepSeek R1和DeepSeek V3,以其高性能和低成本著称。DeepSeek不仅在全球大模型排名中名列前茅,还通过开源策略和低成本部署方案,推动了AI技术的普及。文章详细描述了DeepSeek的使用方式,包括API调用、本地部署和个人使用建议。此外,重点介绍了DeepSeek在数据分析中的应用,如数据清洗、分析洞察和数据可视化,展示了其在提高效率和准确性方面的优势。 适合人群:对大语言模型和AI技术感兴趣的开发者、数据分析师以及企业管理者。 使用场景及目标:①利用DeepSeek进行高效的数据清洗,减少人工干预,提高数据质量;②通过DeepSeek进行深入的数据分析,快速定位问题根源,提供决策支持;③借助DeepSeek生成高质量的数据可视化图表,便于管理层理解和决策。 其他说明:DeepSeek的使用方式灵活多样,既可以通过API调用集成到现有系统中,也可以通过本地部署满足特定的安全和性能需求。个人用户可以选择直接使用或本地部署小型模型,企业则可以根据自身需求选择合适的部署方案。DeepSeek的开源特性使得开发者能够快速构建垂直领域应用,推动协同创新。
2025-05-17 20:43:26 2.01MB 数据分析 AI技术
1