基于深度学习的骨龄检测识别系统(PyTorch+Pyside6+YOLOv5模型)

上传者: NatsuD | 上传时间: 2025-06-10 21:39:43 | 文件大小: 406.37MB | 文件类型: ZIP
随着人工智能技术的快速发展,深度学习在医学图像分析领域展现出巨大的应用潜力。在本项目中,我们关注的是骨龄检测识别系统的开发,该系统基于深度学习框架PyTorch实现,采用Pyside6进行图形用户界面设计,而YOLOv5模型则作为主要的骨龄检测识别算法。YOLOv5是一种先进且快速的对象检测算法,它能够实时高效地识别和定位图像中的多个对象。在本系统的构建过程中,YOLOv5模型将被训练用于识别儿童手腕X光图像中的骨骼特征,并据此推断出相应的骨龄。由于骨龄是评估儿童和青少年生长发育的重要指标,因此该系统在儿科医学诊断中具有重要的应用价值。 在本系统的开发过程中,项目使用了多个文件来维护和说明。其中,CITATION.cff文件用于规范引用格式,以便其他研究者可以准确引用本项目的研究成果。.dockerignore、.gitattributes、.gitignore文件则涉及项目版本控制和容器配置,这些文件用于设置哪些文件应被版本控制系统忽略或特殊处理。tutorial.ipynb文件是一个交互式的Python笔记本,可能包含了使用本系统进行骨龄检测识别的教程或示例代码,这对学习和使用本系统具有实际指导意义。 此外,项目中还包括了一个图片文件555.jpg,虽然具体内容未知,但根据命名推测,它可能被用作YOLOv5模型训练或测试中的样本图像。LICENSE文件包含了本项目所采用的开源许可证信息,它对项目如何被使用、修改和重新分发做了规定。README.zh-CN.md和README.md文件分别为中文和英文版本的项目说明文档,它们提供了关于项目的详细信息和使用指南。CONTRIBUTING.md文件用于指导其他开发者如何为本项目贡献代码,这是开源文化的重要组成部分。 本项目是一个高度集成的系统,它将深度学习、图像识别和友好的用户界面完美结合,为医学影像分析领域提供了一种新颖的解决方案。通过使用YOLOv5模型,系统在骨龄检测方面展现出了高效的性能和准确的识别效果。与此同时,系统的设计充分考虑了实用性、可扩展性和开放性,它不仅能够满足专业人士的需求,同时也为开发者社区提供了一个可供贡献和改进的平台。

文件下载

资源详情

[{"title":"( 205 个子文件 406.37MB ) 基于深度学习的骨龄检测识别系统(PyTorch+Pyside6+YOLOv5模型)","children":[{"title":"CITATION.cff <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"Dockerfile-arm64 <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"Dockerfile-cpu <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":".dockerignore <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 75B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 190B </span>","children":null,"spread":false},{"title":"yolov5-master.iml <span style='color:#111;'> 482B </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 101.23KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 42.42KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 40.45KB </span>","children":null,"spread":false},{"title":"555.jpg <span style='color:#111;'> 38.47KB </span>","children":null,"spread":false},{"title":"optimizer_config.json <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 33.71KB </span>","children":null,"spread":false},{"title":"README.zh-CN.md <span style='color:#111;'> 41.21KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 41.10KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.61KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.56KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":".name <span style='color:#111;'> 12B </span>","children":null,"spread":false},{"title":"Radius_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"PIPFirst_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"Ulna_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"MIP_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"PIP_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"DIPFirst_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"MCPFirst_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"DIP_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"MCP_best.pt <span style='color:#111;'> 42.71MB </span>","children":null,"spread":false},{"title":"best.pt <span style='color:#111;'> 40.24MB </span>","children":null,"spread":false},{"title":"yolov5s.pt <span style='color:#111;'> 14.12MB </span>","children":null,"spread":false},{"title":"back.py <span style='color:#111;'> 124.60KB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 58.59KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 49.65KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 48.47KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 41.35KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 38.93KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 34.25KB </span>","children":null,"spread":false},{"title":"tf.py <span style='color:#111;'> 31.24KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 23.58KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 20.91KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 20.90KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 20.17KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 20.05KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 20.02KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 19.87KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 19.60KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 18.21KB </span>","children":null,"spread":false},{"title":"detecet01.py <span style='color:#111;'> 16.15KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 15.97KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 15.79KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 15.11KB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 13.04KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 11.71KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 10.93KB </span>","children":null,"spread":false},{"title":"clearml_utils.py <span style='color:#111;'> 9.42KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 8.87KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 8.57KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 7.95KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 7.91KB </span>","children":null,"spread":false},{"title":"benchmarks.py <span style='color:#111;'> 7.88KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 7.40KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 6.49KB </span>","children":null,"spread":false},{"title":"load_files.py <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"main_window.py <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"comet_utils.py <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"triton.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"data_utils.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"data.utils.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"trainer1.py <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"trainer1(1).py <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"detect_utils.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"yolo_trans.py <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"voc_2.yolo.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"data_spit.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"my_datasets.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"restapi.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"cut.py <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"data_getclasses.py <span style='color:#111;'> 517B </span>","children":null,"spread":false},{"title":"example_request.py <span style='color:#111;'> 368B </span>","children":null,"spread":false},{"title":"data_util.py <span style='color:#111;'> 330B </span>","children":null,"spread":false},{"title":"test01.py <span style='color:#111;'> 318B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明