上传者: jump7
|
上传时间: 2025-10-29 17:39:42
|
文件大小: 10.97MB
|
文件类型: PDF
本文提出一种名为IOPLIN的深度学习框架,用于自动检测多种路面病害。该方法通过迭代优化补丁标签推断网络,仅需图像级标签即可实现高精度检测,并能粗略定位病害区域。创新的EMIPLD策略解决了无局部标注的难题,结合CLAHE预处理与EfficientNet骨干网络,充分挖掘高分辨率图像信息。研究团队构建了含6万张图像的大规模数据集CQU-BPDD,涵盖七类病害,推动领域发展。实验表明,IOPLIN在AUC、精确率与召回率上均优于主流CNN模型,尤其在高召回场景下优势显著。其具备强鲁棒性与跨数据集泛化能力,适用于真实复杂路况。该技术可用于路面筛查与病害定位,大幅降低人工成本,助力智慧交通运维。代码与数据集已公开,促进学术共享。