2021广东工业智造创新大赛-智能算法赛-瓷砖瑕疵检测YOLOV5-pyqt

上传者: 71879739 | 上传时间: 2025-10-07 22:40:09 | 文件大小: 94.46MB | 文件类型: ZIP
标题和描述中提到的"2021广东工业智造创新大赛-智能算法赛-瓷砖瑕疵检测YOLOV5-pyqt"是一个聚焦于工业领域的竞赛,重点在于利用人工智能技术进行瓷砖瑕疵检测。在这个项目中,参赛者需要使用YOLOV5(You Only Look Once Version 5)深度学习框架,结合Python的PyQT库来实现这一目标。YOLOV5是一种快速且准确的目标检测算法,而PyQT则是一个用于创建图形用户界面的工具,使得用户可以直观地查看和交互检测结果。 标签"pyqt"、"计算机视觉"和"yolo"揭示了项目的核心技术栈。PyQT是Python中的一个模块,用于构建桌面应用程序,它提供了一套完整的GUI工具包,包括窗口、按钮、文本框等组件,使开发者能够构建出功能丰富的应用。计算机视觉(CV)是AI的一个分支,关注如何让机器“看”和理解图像。YOLO(You Only Look Once)是计算机视觉领域中广泛使用的实时目标检测系统,尤其是YOLOV5作为最新版本,在速度和精度上都有显著提升。 在提供的压缩包文件中,我们可以看到以下几个关键文件: 1. `run.ipynb`:这是一个Jupyter Notebook文件,通常用于数据处理、模型训练和结果展示。开发者可能在这里编写了代码,用于加载数据、预处理、训练模型以及展示检测结果。 2. `export.py`:这个文件可能是用于将训练好的模型导出为可部署的形式,便于在实际应用中使用。 3. `main.py`:这通常是主程序文件,负责整个应用的流程控制,包括启动GUI、调用检测函数、显示结果等。 4. `dect.py`:这个可能是检测模块,实现了使用YOLOV5模型进行瓷砖瑕疵检测的逻辑。 5. `requirements.txt`:列出项目运行所需的所有Python包及其版本,确保在不同环境中能正确安装依赖。 6. `yolov5l.yaml`:这是YOLOV5模型的配置文件,定义了网络结构和超参数。 7. `imageSets.yaml`:可能包含了训练和测试图像的设置,比如图像路径、类别信息等。 8. `weights` 文件夹:可能包含了预训练模型的权重文件或者训练过程中保存的模型。 9. `data` 文件夹:通常存储原始图像数据和相关的数据集元数据。 10. `utils` 文件夹:可能包含了一些辅助工具或自定义的函数,如数据处理、模型加载等。 通过这个项目,开发者可以学习到如何利用PyQT构建GUI应用,如何使用YOLOV5进行目标检测,以及如何将这些技术整合到实际工业场景中。同时,项目还涵盖了数据处理、模型训练、模型优化和部署等多个环节,对于提升计算机视觉和深度学习的实践能力具有很高的价值。

文件下载

资源详情

[{"title":"( 168 个子文件 94.46MB ) 2021广东工业智造创新大赛-智能算法赛-瓷砖瑕疵检测YOLOV5-pyqt","children":[{"title":"Dockerfile <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 846B </span>","children":null,"spread":false},{"title":"Dockerfile-arm64 <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"Dockerfile-cpu <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 190B </span>","children":null,"spread":false},{"title":"icon.ico <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false},{"title":"yolov5--pyqt5.iml <span style='color:#111;'> 488B </span>","children":null,"spread":false},{"title":"run.ipynb <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"prediction_file8.jpg <span style='color:#111;'> 890.14KB </span>","children":null,"spread":false},{"title":"000013.jpg <span style='color:#111;'> 887.39KB </span>","children":null,"spread":false},{"title":"prediction_file4.jpg <span style='color:#111;'> 786.97KB </span>","children":null,"spread":false},{"title":"000005.jpg <span style='color:#111;'> 782.75KB </span>","children":null,"spread":false},{"title":"prediction_file5.jpg <span style='color:#111;'> 742.41KB </span>","children":null,"spread":false},{"title":"prediction_file2.jpg <span style='color:#111;'> 731.70KB </span>","children":null,"spread":false},{"title":"000003.jpg <span style='color:#111;'> 729.28KB </span>","children":null,"spread":false},{"title":"prediction_file6.jpg <span style='color:#111;'> 712.45KB </span>","children":null,"spread":false},{"title":"000008.jpg <span style='color:#111;'> 709.00KB </span>","children":null,"spread":false},{"title":"prediction_file3.jpg <span style='color:#111;'> 684.43KB </span>","children":null,"spread":false},{"title":"prediction.jpg <span style='color:#111;'> 684.35KB </span>","children":null,"spread":false},{"title":"000004.jpg <span style='color:#111;'> 683.17KB </span>","children":null,"spread":false},{"title":"prediction_file7.jpg <span style='color:#111;'> 622.49KB </span>","children":null,"spread":false},{"title":"000010.jpg <span style='color:#111;'> 620.39KB </span>","children":null,"spread":false},{"title":"prediction_file0.jpg <span style='color:#111;'> 585.71KB </span>","children":null,"spread":false},{"title":"000001.jpg <span style='color:#111;'> 579.47KB </span>","children":null,"spread":false},{"title":"prediction_file1.jpg <span style='color:#111;'> 543.41KB </span>","children":null,"spread":false},{"title":"000002.jpg <span style='color:#111;'> 539.61KB </span>","children":null,"spread":false},{"title":"optimizer_config.json <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.83KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.76KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"best_640.pt <span style='color:#111;'> 88.57MB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 65.00KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 48.31KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 44.87KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 31.63KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 30.76KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 28.15KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 28.02KB </span>","children":null,"spread":false},{"title":"tf.py <span style='color:#111;'> 26.98KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 26.78KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 19.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 18.79KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 17.49KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 17.00KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 14.58KB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 13.83KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.92KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"clearml_utils.py <span style='color:#111;'> 8.01KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 6.38KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 5.53KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 5.23KB </span>","children":null,"spread":false},{"title":"comet_utils.py <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"data_split.py <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 4.33KB </span>","children":null,"spread":false},{"title":"train_test_val.py <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"triton.py <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"dect.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"yolo_look.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"voc2yolo.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"restapi.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"sweep.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"log_dataset.py <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"example_request.py <span style='color:#111;'> 387B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"dataloaders.cpython-39.pyc <span style='color:#111;'> 45.25KB </span>","children":null,"spread":false},{"title":"dataloaders.cpython-310.pyc <span style='color:#111;'> 45.17KB </span>","children":null,"spread":false},{"title":"common.cpython-39.pyc <span style='color:#111;'> 39.77KB </span>","children":null,"spread":false},{"title":"common.cpython-310.pyc <span style='color:#111;'> 39.11KB </span>","children":null,"spread":false},{"title":"general.cpython-310.pyc <span style='color:#111;'> 37.75KB </span>","children":null,"spread":false},{"title":"general.cpython-39.pyc <span style='color:#111;'> 37.66KB </span>","children":null,"spread":false},{"title":"export.cpython-310.pyc <span style='color:#111;'> 24.69KB </span>","children":null,"spread":false},{"title":"export.cpython-39.pyc <span style='color:#111;'> 24.63KB </span>","children":null,"spread":false},{"title":"plots.cpython-39.pyc <span style='color:#111;'> 21.97KB </span>","children":null,"spread":false},{"title":"plots.cpython-310.pyc <span style='color:#111;'> 21.95KB </span>","children":null,"spread":false},{"title":"wandb_utils.cpython-310.pyc <span style='color:#111;'> 19.33KB </span>","children":null,"spread":false},{"title":"yolo.cpython-310.pyc <span style='color:#111;'> 18.26KB </span>","children":null,"spread":false},{"title":"yolo.cpython-39.pyc <span style='color:#111;'> 18.25KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-310.pyc <span style='color:#111;'> 16.41KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-39.pyc <span style='color:#111;'> 16.39KB </span>","children":null,"spread":false},{"title":"__init__.cpython-310.pyc <span style='color:#111;'> 14.38KB </span>","children":null,"spread":false},{"title":"val.cpython-310.pyc <span style='color:#111;'> 13.67KB </span>","children":null,"spread":false},{"title":"__init__.cpython-310.pyc <span style='color:#111;'> 13.43KB </span>","children":null,"spread":false},{"title":"augmentations.cpython-39.pyc <span style='color:#111;'> 13.39KB </span>","children":null,"spread":false},{"title":"augmentations.cpython-310.pyc <span style='color:#111;'> 13.35KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明