Darrieus风力涡轮机在分散式发电和城市安装中的应用正重新引起人们的兴趣。 过去,人们一直致力于开发一种高效的独立式Darrieus涡轮机,并为此进行了大量的研究。 尽管做出了这些努力,但与水平轴同类产品相比,这些垂直轴涡轮机的效率仍然较低。 涡轮机的当前结构及其固有特性限制了它们在低风速地区的应用,这已通过过去的研究在实验和计算上得到证实。 为了使它们能够在弱风中运行并扩展其运行性能,提出了一种新型的自适应Darrieus风力发电机(ADWT)设计。 混合式Darrieus Savonius转子具有可根据风速动态变化的Savonius转子直径,使风力涡轮机能够在大风时启动,高效运行和停机。 由于Savonius转子的尾流对组合转子的功率性能产生了深远的影响,因此对两个铲斗式Savonius转子在打开和关闭状态下的尾流进行了研究。 当前的研究旨在开发一个分析模型,以预测功率系数以及其他设计参数对拟议设计的影响。 公式化的分析模型使用python编码,并获得10 kW转子的结果。 对弦的长度和封闭的Savonius转子的直径进行参数分析,以寻找最佳直径,以使年度能量输出最大化。 相对
2025-10-20 10:57:27 5.82MB 风力发电机 分析模型
1
【标题解析】:“第五届Mathorcup数学建模竞赛优秀论文.zip”表明这是一个关于Mathorcup数学建模竞赛的压缩文件,其中包含了第五届赛事的优秀论文。Mathorcup是中国颇具影响力的数学建模比赛,旨在促进大学生对数学应用能力的提升,推动数学与实际问题的结合。 【描述解析】:“第五届Mathorcup数学建模竞赛优秀论文.zip”的描述同样指出这是一份包含第五届Mathorcup竞赛优质论文的压缩档案。这些论文代表了参赛者在解决实际问题时,运用数学建模方法的高水平成果。 【标签解析】:“第五届Mathorcup数学建模”这一标签强调了这个资源是关于该特定竞赛的,它可能涵盖了多元化的数学建模主题,涉及到统计、优化、概率论、微积分等多个数学领域,并且是针对第五届比赛的。 【压缩包子文件的文件名称列表】:虽然没有具体的文件名,但可以推测文件中可能包括了论文的PDF文档,每篇论文可能包含以下几个部分:题目、摘要、模型构建、数据处理、结果分析、结论以及参考文献等。每篇论文可能涉及不同的实际问题,如经济、环境、社会、工程等领域的数学应用。 【知识点详解】: 1. **数学建模基础**:数学建模是一种用数学语言描述现实世界现象的方法,它将抽象的概念转化为可计算的形式,以便进行定量分析。 2. **模型选择**:数学建模过程中,根据问题性质选择合适的模型至关重要,可能包括线性规划、非线性优化、微分方程、概率统计模型等。 3. **数据获取与处理**:论文中可能会展示如何收集、整理和分析数据,以支持模型的构建和验证。 4. **算法应用**:可能涉及各种数值方法,如迭代法、蒙特卡洛模拟、最优化算法(如梯度下降、牛顿法)等,来求解复杂问题。 5. **结果解释**:建模结果需要与实际情况相结合,进行合理解释,以证明模型的有效性和实用性。 6. **论文结构**:理解优秀的数学建模论文通常应包括的问题阐述、模型建立、方法解释、结果展示、讨论和结论等部分。 7. **团队协作**:Mathorcup竞赛通常以团队形式参赛,论文中可能体现团队成员的分工合作与协同创新。 8. **创新能力**:优秀论文往往展示了参赛者在面对问题时的独特见解和创新解决方案,这是数学建模竞赛的核心价值之一。 9. **应用领域**:通过阅读这些论文,可以了解数学建模在各个领域的应用,如金融工程、交通规划、生物医学、能源管理等。 10. **批判性思维**:论文中可能包含对已有模型的批评和改进,体现了批判性思维在数学建模中的重要性。 这个压缩文件是一份宝贵的教育资源,对于学习和研究数学建模方法、了解实际问题的数学解决方案,以及提高分析和解决问题的能力具有极大的参考价值。
2025-10-18 11:01:43 11.53MB
1
【Matlab练习题详解】 1、创建向量的方法: - 直接赋值法:`v = [2 4 6 8 10]` - 使用“:”:`v = 2:2:10` - 使用函数:`v = linspace(2,10,5)` 或 `v = ones(1,5)*[2:2:10]` 2、建立10维向量: - 方法一:`v = 20:1:29` - 方法二:`v = [20;21;22;23;24;25;26;27;28;29]` 3、矩阵分解为D-L-U形式: ```matlab A = [a11 a12 a13; a21 a22 a23; a31 a32 a33]; D = diag(diag(A)); % 对角矩阵D L = tril(A, -1); % 下三角矩阵L U = triu(A, 1); % 上三角矩阵U ``` 4、提取对角线元素并构造对角矩阵: ```matlab A = [a11 a12 a13; a21 a22 a23; a31 a32 a33]; d = diag(A); % 提取对角线元素 D = diag(d); % 构造对角矩阵D ``` 5、Fibonacci数列的生成: ```matlab a = 1; b = 1; fib = [a, b]; for k = 3:100 c = a + b; a = b; b = c; fib = [fib, c]; end ``` 6、百鸡问题的解法: 设鸡翁、母、雏分别为x、y、z只,则有以下方程组: ``` x + 5 = 100 (鸡翁的价钱) y + 3 = 100 (鸡母的价钱) 3z = 100 (鸡雏的价钱) ``` 解得:x=20, y=33, z=11 7、计算n! (n=15): ```matlab n = 15; factorial_n = 1; for i = 1:n factorial_n = factorial_n * i; end ``` 8、此处缺少具体内容,请提供完整问题。 9、符号计算: ```matlab syms x; % 以具体函数为例,如f(x) = x^2 + 3*x + 1 f = x^2 + 3*x + 1; ``` 10、同上,缺少具体内容。 11、计算无穷级数的近似值: ```matlab tol = 1e-6; sum = 1; term = 1; k = 1; while abs(term) > tol term = term / k; sum = sum + term; k = k + 1; end ``` 其余题目未在摘要中展示,但都是基于Matlab的基础操作,包括排序、矩阵运算、方程求解、符号计算、绘图等。解决这些问题需要掌握Matlab的基本语法,例如数组操作、循环、条件判断、函数调用、矩阵运算、符号运算以及绘图函数等。对于高级应用,如解非线性方程组或求积分,可以使用Matlab内置的工具箱,如`fsolve`、`int`等。通过这些练习,Matlab初学者可以逐步熟悉并精通这个强大的数学计算环境。
2025-10-16 22:25:56 467KB matlab 数学建模
1
### 建模基础知识点概览 #### 一、建模基础概述 《建模基础》一书由薛毅编写,北京工业大学出版社出版。本书旨在为读者提供一个系统的数学建模学习路径,涵盖数学建模的基本概念、方法和技术。通过本书的学习,读者能够建立起对数学建模基本框架的理解,并掌握解决实际问题所需的建模技能。 #### 二、基础知识篇 ##### 2.1 建模的基本步骤 - **问题理解**:明确问题背景、目标及约束条件。 - **模型假设**:根据问题特点提出合理的假设。 - **建立模型**:利用数学工具构建数学模型。 - **求解模型**:采用适当的数学方法求解模型。 - **结果分析**:解释模型的解决方案,并进行合理性评估。 - **模型检验**:通过数据验证模型的有效性。 - **报告撰写**:撰写完整的建模报告,包括问题重述、模型构建、求解过程、结果分析等内容。 ##### 2.2 数学工具 - **线性代数**:矩阵运算、向量空间等,适用于处理线性关系的问题。 - **概率论与数理统计**:用于处理随机性和不确定性。 - **微积分**:包括微分和积分,用于处理变化率和累积量的问题。 - **优化理论**:线性规划、非线性规划等,用于寻找最优解。 - **数值计算**:数值分析方法,如插值、数值积分等,用于近似求解。 ##### 2.3 模型类型 - **确定性模型**:在已知条件下能够得到唯一解的模型。 - **随机性模型**:考虑随机因素的影响,通常需要概率论的支持。 - **离散模型**:适用于处理离散数据或状态的问题。 - **连续模型**:适用于处理连续变量的问题,如微分方程模型。 #### 三、进阶技巧篇 ##### 3.1 多元回归分析 - **多元线性回归**:适用于多个自变量与一个因变量之间的线性关系研究。 - **多元非线性回归**:适用于非线性关系的研究。 ##### 3.2 非参数统计方法 - **秩相关系数**:如Spearman秩相关系数,用于衡量两个变量之间的非线性相关性。 - **Kruskal-Wallis检验**:一种非参数的单因素方差分析方法,用于比较多个独立样本的中位数是否相同。 ##### 3.3 动态规划 - **动态规划原理**:将复杂问题分解为一系列简单的子问题,通过递归求解。 - **状态转移方程**:定义问题的状态和决策,以及如何从当前状态转移到下一个状态。 ##### 3.4 网络流算法 - **最大流最小割定理**:网络流理论中的核心定理之一,用于求解最大流问题。 - **Ford-Fulkerson算法**:一种常用的求解最大流问题的算法,基于增广路的思想。 #### 四、案例分析篇 - **物流配送优化**:通过建立运输成本模型,使用最短路径算法或遗传算法等方法来优化配送路线。 - **金融市场预测**:利用时间序列分析、机器学习等技术预测股票价格、汇率等金融市场指标的变化趋势。 - **疾病传播模拟**:建立传染病传播模型,如SIR模型,用于模拟和预测疫情的发展情况。 #### 五、实践应用篇 - **软件工具介绍**:MATLAB、Python等编程语言及其相关库在数学建模中的应用。 - **项目实操指南**:详细介绍如何运用所学知识完成一个具体的数学建模项目,包括问题选择、数据收集、模型构建、结果分析等环节。 通过以上内容的学习,读者不仅能够掌握数学建模的基本理论和方法,还能够将这些理论应用于实际问题中,提高解决实际问题的能力。
2025-09-25 14:23:03 4.02MB 建模基础 数学建模
1
2025研究生数学建模竞赛赛题附件(含相关通知及word与latex模板)
2025-09-21 15:55:19 6.89MB 数学建模
1
在数学建模竞赛中,掌握一系列实用的算法是至关重要的,尤其对于参与美国大学生数学建模竞赛(MCM/ICM)和研究生级别的比赛。以下将详细介绍这些算法及其Python实现,帮助参赛者提升解决问题的能力。 1. **多目标模糊综合评价模型**:这种模型在处理多因素、多目标决策问题时特别有用,它结合了模糊逻辑,通过模糊集理论对复杂问题进行量化评估。Python中的`scipy`和`numpy`库可以辅助实现这一模型。 2. **二次规划模型**:二次规划是优化问题的一种,寻找最小化或最大化的二次函数目标,同时满足线性约束条件。Python的`scipy.optimize.minimize`函数提供了求解二次规划问题的接口。 3. **整数规划模型**:在实际问题中,决策变量往往只能取整数值。`pulp`库是Python中的一个强大工具,用于解决包括整数规划在内的线性规划问题。 4. **非线性规划模型**:非线性规划涉及目标函数和约束条件为非线性的优化问题。Python的`scipy.optimize`模块提供了求解非线性规划问题的`minimize`函数,如SLSQP、COBYLA等算法。 5. **TOPSIS(技术优势排序理想解决方案)综合评价模型**:这是一种多属性决策分析方法,用于对多个备选方案进行排序。Python可以通过自定义函数实现TOPSIS算法,涉及到加权欧氏距离和理想解的概念。 6. **K-means聚类模型**:K-means是一种常见的无监督学习算法,用于将数据集分为K个不重叠的类别。Python的`sklearn.cluster.KMeans`提供了一种简单易用的实现方式。 7. **蒙特卡洛模型**:基于随机抽样或统计试验的模拟方法,广泛应用于概率和统计问题。Python的`random`和`numpy`库可用于生成随机数,进而构建蒙特卡洛模型。 8. **最短路径算法**:如Dijkstra算法或Floyd-Warshall算法,用于找出网络图中两个节点间的最短路径。Python可以使用`networkx`库实现这类算法。 9. **判别分析Fisher模型**:Fisher判别分析用于分类问题,通过找到最佳的超平面来区分不同的类别。Python的`scikit-learn`库提供了`LinearDiscriminantAnalysis`类实现该模型。 10. **支持向量机模型**:支持向量机(SVM)是一种强大的分类和回归方法,通过构造最大间隔超平面进行决策。Python的`scikit-learn`库的`svm`模块提供了SVM的多种实现,如线性SVM、核SVM等。 以上就是针对数学建模竞赛中常见的算法及其Python实现的概述,掌握这些工具和技巧将有助于参赛者在比赛中更高效地解决问题。在实际应用中,需要结合具体问题灵活选择和调整算法,以及不断优化模型以提高解决问题的精度和效率。
1
本题研究的是无人机投放烟幕干扰弹的策略优化问题,目标是通过合理设计无人机的飞行方向、飞行速度以及烟幕干扰弹的投放时机和起爆时机,使得在来袭导弹飞行过程中,烟幕能够尽可能长时间地遮蔽真实目标,从而干扰导弹对真实目标的识别与锁定。
2025-09-06 09:03:34 317KB 数学建模
1
2024年江苏省研究生数学建模科研创新实践大赛B题 火箭烟幕弹运用策略优化
2025-09-04 20:21:20 110KB
1
本文档除了PPT相关课件外,还附带试题,MATLAB程序,课程分析等!《数学软件与实验》是继《数学分析》和《高等代数》等课程后开设的独立实验课程,既是理论教学的深化和补充,也是科学研究的导引和支持,充分利用计算机和软件,具有较强的实践性,是数学类等专业学生的选修课。目的是培养学生了解数学基本方法在实际生活中的应用,能够运用基本的现代计算工具高效求解科学与工程问题,基本具备应用数学方法和数学软件解决实际问题的基本技能。
1
在电力电子技术飞速发展的当下,磁性元件作为功率变换器中的关键部分,其性能直接决定了系统的效率、功率密度与可靠性。特别是磁芯损耗,在高频高效的应用中占有相当比重。准确评估磁芯损耗,对优化设计和提升转换效率至关重要。本文采用实验数据和数学建模相结合的方法,构建了磁芯损耗的预测模型。 针对不同励磁波形的精确识别问题,利用四种磁芯材料的数据集,分析了磁通密度波形的时域特征,并进行傅里叶变换至频域提取谐波。运用FNN构建MLP模型,用前八个谐波负值作为特征数据进行训练,但效果不佳。随后,采用信号处理与机器学习结合的THD-MLP模型,准确率达到了100%,并成功预测了数据。 研究了温度对磁芯损耗的影响,对同一种材料在不同温度下的损耗数据进行预处理和初步分析,结合斯坦麦茨方程,通过最小二乘回归拟合得到了修正后的损耗方程。该方程预测效果良好,相关系数达到0.997678,RMSE为11822.8。 再者,为探究温度、励磁波形和磁芯材料对损耗的综合影响,首先对数据进行分类和特征提取,构建了磁损值与这些因素的多项式模型,并用最小二乘法拟合获得最佳参数。通过枚举法找到了最小磁损值对应的条件,预测在特定条件下的最小磁芯损耗。 在分析了温度、励磁波形和材料对磁芯损耗的独立及协同影响后,发现传统回归方法在处理复杂非线性关系时存在局限,预测精度不足。因此,将最小二乘回归结果作为新特征,与MLP结合进行非线性回归建模,引入对数变换处理损耗数据,最终得到与真实数据高度相关的预测结果。 为计算最小磁芯损耗和传输磁能最大时的条件值,构建了基于预测模型的目标函数,并转化为最小值问题。利用遗传算法进行求解,确定了磁芯损耗和传输磁能的最优值。整个研究过程运用了多种技术和算法,包括最小二乘回归、多层感知器MLP模型、傅里叶变换、FNN以及遗传算法。 关键词包括:磁芯损耗、最小二乘回归、多层感知器MLP模型、机器学习、遗传算法等。 问题五的求解过程表明,在电力电子变换器优化设计中,准确评估磁性元件性能,特别是磁芯损耗,对于提高整体系统的效率和可靠性具有重要意义。通过实验数据和数学建模相结合,构建的预测模型能够有效评估磁芯损耗,为磁性元件设计和功率转换效率优化提供有力支持。同时,通过模型预测,可以确定最优的工作参数,为磁性元件的应用提供理论基础和实际操作指导。整体研究过程中,综合利用了现代数学建模技术和先进的机器学习方法,展现了跨学科研究在解决实际工程问题中的潜力和价值。
1