MIMO雷达是一种多输入多输出雷达系统,它利用多个发射和接收天线来提高雷达系统的性能。MIMO雷达在测量目标的波达方向(DOA)方面具有显著的优势,特别是在多径环境下,能够有效区分直接信号和反射信号。多径效应是指雷达信号在传播过程中遇到障碍物后反射,形成多条路径到达接收点,这些路径的信号可能相互干涉,造成信号质量的波动。在多径环境中准确估计目标的DOA对于雷达系统来说是一个重要的技术挑战。 针对这一挑战,本文提出了基于双向空间平滑的样本复用MIMO雷达低角多径目标DOA估计算法。该算法基于MIMO雷达四路径回波信号模型,通过匹配滤波技术对接收信号进行处理,得到一个虚拟阵列,即等效的阵列接收数据。这种方法的优点在于可以利用MIMO雷达波形分集的特性,有效降低由多径效应引起的波达方向估计误差。 虚拟阵列的构建利用了MIMO雷达的空间分集能力,通过合成虚拟阵元来增加阵列的有效孔径,从而改善波达方向估计的性能。在虚拟阵列的基础上,算法实施了行列复用技术,即同时对虚拟阵列进行横向和纵向的空间平滑处理。这种双向空间平滑的做法可以进一步减少多径效应带来的干扰,提高低信噪比条件下的DOA估计精度。 空间平滑是一种有效的信号处理技术,主要用来抑制阵列信号中由于相干噪声引起的估计误差。在MIMO雷达系统中,空间平滑通过构造一个新的信号协方差矩阵来实现对信号的处理,该矩阵可以通过对原始数据进行加权平均得到,从而使原本因多径效应而相干的信号变得不相干,削弱或去除这些相干噪声的影响。 文章中提到的M-S-S MUSIC算法是一种常用的波达方向估计算法,它基于信号的特征结构,并利用子空间技术来估计目标方向。然而,该算法在低信噪比环境下性能会有所下降。本研究的算法通过空间平滑有效提高了DOA估计的精度,特别是在信噪比小于-12dB的恶劣环境下,能够将均方根误差平均减小1度,显示了显著的性能优势。 关键词中提及的“MIMO雷达”、“多径”、“波达方向估计”和“空间平滑”是雷达信号处理领域的专业术语,反映了本文算法所涉及的核心技术和应用场景。MIMO雷达的应用主要是在无线通信和雷达系统中,利用空间分集提高系统的性能;多径分析则是在雷达和通信信号处理中必须考虑的环境因素;波达方向估计是雷达系统对目标进行定位和跟踪的重要依据;空间平滑技术在雷达信号处理中具有减少干扰、增强信号处理能力的作用。 文章的研究成果对于雷达系统设计、信号处理算法开发以及多径环境下的目标定位等方面都具有重要的理论和实际应用价值。通过改善DOA估计精度,可以有效提升雷达系统的性能,特别是在复杂电磁环境下,对于提高目标检测、跟踪和识别能力具有重要的意义。
2025-10-24 11:09:37 1.52MB 研究论文
1
针对基于阵列协方差矩阵特征分解的子空间类算法存在的问题,提出了一种基于改进空间平滑的新方法。首先介绍了“等效信源”的概念,在此基础上分析了当目标数多于发射阵元数时,一些基于子空间类算法失效的原因;从理论上推导说明了在接收阵元数足够多的情况下,本文算法可突破发射阵元数对可估计目标数的限制的机理,从而使得MIMO雷达在发射阵元数较少时能估计更多的目标。仿真结果表明:本文所提方法具有比TDS算法更好的估计性能。
2025-10-24 10:52:24 752KB 工程技术 论文
1
感应电机有/无速度传感器FOC控制详解:Matlab Simulink仿真模型与71页英文文献文档支持,感应电机有/无速度传感器FOC控制详解:MATLAB仿真模型与71页文献支持,涵盖磁链与转速估计,感应电机有 无传感器控制FOC带文档 感应电机有 无速度传感器FOC控制,异步电机有 无速度传感器矢量控制,提供 MATLAB Simulink仿真模型,模型包可运行,配套71页的英文参考文献,各子模型的模型细节、公式和原理基本都能在文献相应章节找到,有速度传感器矢量控制对应第7章,无速度传感矢量控制对应第8章,包括磁链估计、转速估计,磁链估计运用结合电压模型和电流模型进行磁链估计的方法。 ,感应电机; 无传感器控制FOC; 速度传感器FOC控制; 异步电机; 无速度传感器矢量控制; MATLAB Simulink仿真模型; 模型包; 文献; 磁链估计; 转速估计,感应电机与异步电机FOC控制技术:有/无传感器及MATLAB仿真模型研究
2025-10-21 16:15:07 9.01MB
1
对自适应均衡进行完整仿真,仿真原理与具体代码实现说明见:https://blog.csdn.net/jz_ddk/article/details/146328246?spm=1011.2415.3001.5331 在数字通信领域,自适应均衡器作为一种有效的信号处理技术,其主要功能是补偿因信道特性不理想而造成的信号失真。自适应均衡器通过动态地调整其内部参数,以适应信道的变化,从而提高通信质量。该技术在无线通信、光纤通信以及数据存储等多个领域都有广泛的应用。在本仿真案例中,我们将通过Python语言实现一个完整的自适应均衡器仿真系统,并通过一系列图像文件以及代码说明文档来展示其工作原理和仿真结果。 在仿真代码中,我们首先需要生成或获取信道的脉冲响应,然后根据这个响应来模拟通过信道传输的信号。在接收端,信号会因为信道特性的影响而产生失真,这时自适应均衡器的作用就凸显出来。它会根据接收信号的特性,通过一定的算法来调整内部参数,以期达到最佳的信号接收状态。常用的自适应均衡算法有最小均方误差(LMS)算法、递归最小二乘(RLS)算法、盲均衡算法等。 在本案例中,仿真系统所采用的算法并未在题目中明确指出,但可以推测可能是LMS算法,因为LMS算法因其简洁性和有效性在仿真和实际应用中都较为常见。LMS算法通过最小化误差信号的均方值来不断调整均衡器的权重,以期达到最佳均衡效果。 在仿真中,通常会涉及到几个关键的步骤。首先是初始化均衡器的权重,然后通过不断迭代来更新权重。每次迭代过程中,都需要计算误差信号,这是均衡器调整自身参数的重要依据。此外,仿真过程中还会涉及到一些性能指标的评估,比如均方误差(MSE)、信噪比(SNR)、眼图等,这些指标能够直观地反映均衡器性能的好坏。 在提供的文件列表中,我们看到了几个图像文件,这些文件应该是仿真过程中的输出结果。"auto_EQ_scatter_eye.png"可能是一个散点图,用以展示均衡前后的信号分布情况;"auto_EQ_data.png"可能展示的是均衡前后的信号波形数据;而"auto_EQ_Err.png"可能展示的是均衡器在训练过程中误差信号的变化。这些图像文件对于评估和理解自适应均衡器的工作状态非常重要。 "代码说明.txt"文件应该包含了对仿真代码的详细解释,这将帮助我们更好地理解代码中每个函数和语句的作用,以及它们是如何协同工作以实现自适应均衡的。 通过这些文件,我们可以获得一个关于自适应均衡器工作原理和实现过程的全面了解。从信道特性的模拟到自适应均衡算法的应用,再到性能评估指标的计算与分析,整个过程为我们提供了一个清晰的自适应均衡器仿真实现的框架。这不仅有助于我们理解理论知识,更能在实际工程应用中提供有力的参考。
2025-10-21 15:15:58 850KB python 自适应均衡 信号处理 算法仿真
1
自适应波束形成与Matlab程序代码 1.均匀线阵方向图 2.波束宽度与波达方向及阵元数的关系 3. 当阵元间距时,会出现栅瓣,导致空间模糊 4. 类似于时域滤波,天线方向图是最优权的傅立叶变换 5.最大信噪比准则方向图和功率谱 6.ASC旁瓣相消----MSE准则 7.线性约束最小方差(LCMV)准则 8.Capon beamforming 9.不同方法估计协方差矩阵的Capon波束形成 10.多点约束的Capon波束形成和方向图 11.自适应波束形成方向图 ### 自适应波束形成与Matlab程序代码 #### 1. 均匀线阵方向图 在信号处理领域,尤其是雷达和通信系统中,**均匀线阵**是一种常见的天线配置方式。它由一系列等间隔排列的阵元组成,通过调整阵元之间的相位差可以实现对电磁波的定向发射或接收。对于一个具有`N`个阵元的均匀线阵,当阵元间距`d`与波长`λ`满足一定关系时,能够形成特定的方向图。 **MATLAB示例程序**: ```matlab clc; clear all; close all; imag = sqrt(-1); element_num = 32; % 阵元数 d_lamda = 1/2; % 阵元间距d与波长λ的关系 theta = linspace(-pi/2, pi/2, 200); % 角度范围 theta0 = 0; % 来波方向 w = exp(imag * 2 * pi * d_lamda * sin(theta0) * (0:element_num-1)'); for j = 1:length(theta) a = exp(imag * 2 * pi * d_lamda * sin(theta(j)) * (0:element_num-1)'); p(j) = w' * a; end patternmag = abs(p); patternmagnorm = patternmag / max(patternmag); patterndB = 20 * log10(patternmag); patterndBnorm = 20 * log10(patternmagnorm); % 绘制方向图 figure(1) plot(theta * 180 / pi, patternmag); grid on; xlabel('θ (deg)') ylabel('Amplitude') title(sprintf('%d 阵元均匀线阵方向图, 来波方向为 %d°', element_num, theta0 * 180 / pi)); figure(2) plot(theta, patterndBnorm, 'r'); grid on; xlabel('θ (rad)') ylabel('Amplitude (dB)') title(sprintf('%d 阵元均匀线阵方向图, 来波方向为 %d°', element_num, theta0 * 180 / pi)); axis([-1.5 1.5 -50 0]); ``` **仿真结果**: - **来波方向为 0°** - **不归一化** - **归一化** - **来波方向为 45°** - **不归一化** - **归一化** **结论**:随着阵元数的增加,波束宽度变窄,分辨力提高。 #### 2. 波束宽度与波达方向及阵元数的关系 波束宽度是衡量波束集中程度的一个重要指标。波束宽度越小,意味着方向图主瓣越窄,系统的方向性和分辨能力越强。波束宽度与阵元数`N`、阵元间距`d`以及波达方向`θ`有关。 **MATLAB示例程序**: ```matlab clc; clear all; close all; imag = sqrt(-1); element_num1 = 16; element_num2 = 128; element_num3 = 1024; lambda = 0.1; d = 0.5 * lambda; theta = 0:0.5:90; % 以下代码用于计算不同阵元数下的方向图 % 请注意,为了保持简洁,这里省略了具体的循环计算部分 % 实际操作时应补充完整计算过程 ``` **结论**:阵元数增加时,波束宽度显著减小;波达方向改变时,波束的主瓣位置随之移动。 #### 3. 当阵元间距时,会出现栅瓣,导致空间模糊 当阵元间距`d`接近或超过半个波长时,即`d > λ/2`,方向图上会出现多个副瓣(称为栅瓣),这些副瓣可能会与主瓣重叠,从而导致信号的空间分辨能力下降。 **解决方法**:通常可以通过增加阵元间距或采用其他阵列结构(如非均匀线阵)来减少栅瓣的影响。 #### 4. 类似于时域滤波,天线方向图是最优权的傅立叶变换 在自适应波束形成中,天线阵列的方向图可以视为输入信号经过一系列权重(权向量)调整后的输出。这种调整类似于时域滤波器中的加权求和过程。利用傅立叶变换理论,可以有效地分析和设计最优的权向量。 #### 5. 最大信噪比准则方向图和功率谱 最大信噪比(Maximun Signal-to-Noise Ratio, MSNR)准则是一种广泛使用的优化目标,旨在最大化信号相对于噪声的比值。该准则下得到的方向图能够有效抑制噪声干扰,提高信号质量。 #### 6. ASC旁瓣相消——MSE准则 ASC(Adaptive Sidelobe Cancellation)技术是一种有效的旁瓣抑制手段。最小均方误差(Minimum Square Error, MSE)准则则是ASC中常用的优化目标之一,旨在最小化输出信号与期望信号之间的均方误差。 #### 7. 线性约束最小方差(LCMV)准则 LCMV(Linearly Constrained Minimum Variance)准则是在限制条件下的最小方差优化问题。这种准则可以在满足某些约束条件的同时,使得输出信号的方差最小化。 #### 8. Capon波束形成 Capon波束形成是一种基于最小均方误差估计的方法。与传统的MSNR准则不同,Capon波束形成考虑了信号的协方差矩阵,并以此为基础来确定最优权向量。这种方法可以有效抑制旁瓣并增强主瓣。 #### 9. 不同方法估计协方差矩阵的Capon波束形成 在实际应用中,由于信号的真实协方差矩阵通常是未知的,因此需要通过不同的方法来估计这个矩阵。这些方法包括样本协方差矩阵法、最小二乘法等。根据不同的协方差矩阵估计方法,Capon波束形成的性能也会有所不同。 #### 10. 多点约束的Capon波束形成和方向图 多点约束Capon波束形成允许在多个指定方向上同时施加约束,例如要求在某些方向上保持高增益,在其他方向上进行抑制。这种方法可以更加灵活地控制方向图的形状。 #### 11. 自适应波束形成方向图 自适应波束形成是一种能够自动调整方向图的技术,它可以根据接收到的信号动态地改变阵列的权向量。这种方式不仅能够提高系统的抗干扰能力,还能适应不断变化的工作环境。 自适应波束形成技术在现代雷达和通信系统中扮演着极其重要的角色。通过合理选择算法和优化准则,可以有效提升系统的性能,满足复杂的应用需求。
2025-10-20 23:01:37 222KB matlab
1
基于扩展卡尔曼滤波算法的车辆质量与道路坡度精准估计模型及Matlab Simulink实现,基于扩展卡尔曼滤波算法的车辆质量与道路坡度精确估计模型及应用研究,基于拓展卡尔曼滤波的车辆质量与道路坡度估计 车辆坡度与质量识别模型,基于扩展卡尔曼滤波,估计曲线与实际误差合理。 先用递归最小二乘法(RLS)质量识别,最后利用扩展卡尔曼坡度识别(EKF)。 附带对应文档21f 备Matlab simulink模型 2019以上版本 ,车辆质量估计;道路坡度估计;扩展卡尔曼滤波;递归最小二乘法;Matlab simulink模型,基于扩展卡尔曼滤波的车辆坡度与质量联合估计模型
2025-10-20 22:03:16 2.17MB 哈希算法
1
Darrieus风力涡轮机在分散式发电和城市安装中的应用正重新引起人们的兴趣。 过去,人们一直致力于开发一种高效的独立式Darrieus涡轮机,并为此进行了大量的研究。 尽管做出了这些努力,但与水平轴同类产品相比,这些垂直轴涡轮机的效率仍然较低。 涡轮机的当前结构及其固有特性限制了它们在低风速地区的应用,这已通过过去的研究在实验和计算上得到证实。 为了使它们能够在弱风中运行并扩展其运行性能,提出了一种新型的自适应Darrieus风力发电机(ADWT)设计。 混合式Darrieus Savonius转子具有可根据风速动态变化的Savonius转子直径,使风力涡轮机能够在大风时启动,高效运行和停机。 由于Savonius转子的尾流对组合转子的功率性能产生了深远的影响,因此对两个铲斗式Savonius转子在打开和关闭状态下的尾流进行了研究。 当前的研究旨在开发一个分析模型,以预测功率系数以及其他设计参数对拟议设计的影响。 公式化的分析模型使用python编码,并获得10 kW转子的结果。 对弦的长度和封闭的Savonius转子的直径进行参数分析,以寻找最佳直径,以使年度能量输出最大化。 相对
2025-10-20 10:57:27 5.82MB 风力发电机 分析模型
1
基于混合决策的完全自适应分布式鲁棒框架:Wasserstein度量的多阶段电力调度策略,基于混合决策与Wasserstein度量的完全自适应分布式鲁棒优化模型:应对风电渗透下电网调度挑战的研究,基于混合决策的完全自适应分布鲁棒 关键词:分布式鲁棒DRO wasserstwin metric Unit commitment 参考文档:无 仿真平台:MATLAB Cplex Mosek 主要内容:随着风电越来越多地渗透到电网中,在实现低成本可持续电力供应的同时,也带来了相关间歇性的技术挑战。 本文提出了一种基于混合决策规则(MDR)的完全自适应基于 Wasserstein 的分布式鲁棒多阶段框架,用于解决机组不确定性问题(UUC),以更好地适应风电在机组状态决策和非预期性方面的影响。 调度过程。 与现有的多阶段模型相比,该框架引入了改进的MDR来处理所有决策变量以扩展可行域,因此该框架可以通过调整决策变量的相关周期数来获得各种典型模型。 因此,我们的模型可以为一些传统模型中不可行的问题找到可行的解决方案,同时为可行的问题找到更好的解决方案。 所提出的模型采用高级优化方法和改
2025-10-16 17:24:59 165KB
1
在通信系统中,正交频分复用(OFDM)技术是一种强大的高速数据传输技术,尤其在多径衰落信道条件下,OFDM系统表现出明显的优势。多径衰落信道,由于环境中的反射、散射和衍射现象,使得信号在传输过程中会形成多个路径,导致接收信号产生时延和衰减,从而引起符号间干扰。正交频分复用(OFDM)技术通过将高速串行数据流分散到多个低速子信道上并行传输,使得每个子信道上的符号周期相对较长,从而有效地抵抗频率选择性衰落。为了进一步提升OFDM系统在多径衰落信道条件下的性能,定时同步和信道估计是两个至关重要的过程。 定时同步是指在接收端对信号进行精确的时间定位,以确保接收信号能够与发射信号保持时间同步。在多径衰落信道中,定时同步尤为重要,因为信号的时延分散可能导致各个路径上的信号不能正确地重叠在接收端,进而影响接收信号的质量和系统的性能。而信道估计则指的是对接收信号经过的信道特性进行估计,以获得信道的频率响应或脉冲响应。信道估计的准确性直接关系到数据解调和信号恢复的质量。 为了解决OFDM系统在多径衰落信道下对定时同步和信道估计误差的敏感性,范建存与殷勤业提出了一种新的联合定时同步和信道估计算法。该算法的关键在于使用特定的周期OFDM符号作为训练序列。这种训练序列在频域具有恒模特性,即不同频率的调制幅度相同。利用这样的训练序列,接收端可以与本地参考训练序列进行相关运算,并通过粗细两阶段同步处理获得精确的定时同步和准确的信道估计。 在提出的算法中,粗同步阶段主要是为了捕获同步序列的大致时间位置,而细同步阶段则进一步精确同步位置,以达到精确定时同步的目的。通过粗细两阶段的联合处理,可以有效提升同步性能,并降低同步误差。这一算法在仿真结果中显示,在多径瑞利衰落信道下,提出的算法在定时方差相同时,能够获得大约7dB的增益,而且能够消除误差平底效应,也即避免了信道估计性能在较低信噪比环境下的性能急剧下降。 信道估计中,消除误差平底效应是非常关键的。在多径衰落信道中,信道的时变特性常常会导致信道估计出现误差,这种误差在低信噪比的环境中可能会呈现一种“地板效应”,即信道估计性能无法继续提升甚至下降。通过上述算法,可以有效地提升信道估计性能,从而提高整个系统的传输质量。 文章中还提到,循环前缀(CP)是OFDM技术中的另一个重要组成部分。循环前缀通过在OFDM符号后附加一定长度的数据序列,可以保证OFDM符号在经过时间弥散信道后各载波间的正交性。只要循环前缀的长度大于信道的时延扩展,就可以通过循环前缀与OFDM符号的相关运算消除符号间干扰(ISI)。循环前缀的使用,极大地简化了接收端信号处理的复杂性,同时保证了系统具有较高的频谱效率。 文章指出OFDM技术之所以在通信系统中广泛应用,除了上述提到的技术优势,还因为其简单的实现方式。OFDM技术的频谱效率高,能够有效地支持宽带高速数据传输,因此被广泛应用于包括数字音频广播(DAB)、无线局域网(WLAN)、4G和5G移动通信系统等多种通信系统中。OFDM技术的优势使其成为现代通信系统中的核心技术之一。
2025-10-16 14:48:59 344KB 定时同步
1
基于自适应DVFS的SOC低功耗技术研究 基于自适应动态电压频率调节(DVFS)技术是一种有效的降低SOC(System on Chip)功耗的方法。本文提供了一种自适应DVFS方式,构造了与之对应的系统模型。在计算机上对该模型进行了模拟实验,得到一组均衡的前向预测参数。 SOC低功耗技术研究的重要性在于,随着嵌入式消费电子产品的普及,媒体处理与无线通信、3D游戏逐渐融合,其强大的功能带来了芯片处理能力的增加,在复杂的移动应用环境中,功耗正在大幅度增加。因此,降低嵌入式芯片的功耗已迫在眉睫。 DVFS技术可以降低芯片功耗,降低动态功耗的手段有两种:一是通过工具优化逻辑结构来降低a;二是通过编码方式来实现低的a,例如采用翻转码。同时,降低静态功耗可采用Multi-Vdd,Multi-Vth两种方法。 在DVFS系统中,CPU是一个电压可变的power domain,称为CPU_subsys。其他模块则是另一个power domain,称为peri_subsys,其中包括外部memory接口(EMI)、媒体协处理器(MCP)、LCD控制器(LCD)、以及与电压控制相关的PerformanceMonitor(PM)模块。 本文研究了一种基于自适应DVFS的SOC低功耗技术,通过构造系统模型和模拟实验,得到了一组均衡的前向预测参数。该技术可以降低芯片功耗,提高低功耗电子产品的性能和可靠性。 DVFS技术可以应用于各种嵌入式系统,如手机、笔记本电脑、平板电脑等,以降低功耗和提高性能。同时,DVFS技术还可以应用于数据中心和云计算等领域,以降低服务器的功耗和提高数据中心的效率。 本文提供了一种基于自适应DVFS的SOC低功耗技术,通过降低动态功耗和静态功耗,提高了低功耗电子产品的性能和可靠性。该技术可以广泛应用于各种嵌入式系统和数据中心等领域,以降低功耗和提高性能。 在DVFS技术中,降低动态功耗的手段有多种,包括降低a、降低Ceff、降低fclock等。其中,降低a可以通过工具优化逻辑结构或编码方式来实现。降低Ceff可以通过选择合适的工艺来实现。降低fclock可以通过gated clock时钟来实现。 在DVFS系统中,PerformanceMonitor(PM)模块用于监控芯片性能,并根据性能变化,直接调节电压和频率。Power Controller(PC)模块用于计算控制参数,并传递给Power Supply(PS)模块,用于提供可变的电压Vdd_arm。 本文提供了一种基于自适应DVFS的SOC低功耗技术,通过降低动态功耗和静态功耗,提高了低功耗电子产品的性能和可靠性。该技术可以广泛应用于各种嵌入式系统和数据中心等领域,以降低功耗和提高性能。
2025-10-15 14:25:29 89KB DVFS 硬件设计 原理图设计
1