在IT领域,开发Excel加载项是为了扩展Microsoft Excel的功能,使其能根据特定需求执行自定义任务。本主题将深入探讨如何利用Excel的C API(应用程序编程接口)和COM(组件对象模型)来创建这样的加载项。这是一项高级技能,通常涉及C++编程语言,以及Windows操作系统下的开发环境,如Visual Studio 6(VS6)或MFC(Microsoft Foundation Classes)库。 标题"使用Excel C API和COM的Excel加载项"表明我们将讨论如何通过C API和COM接口与Excel进行交互。C API是Excel提供的一套函数,允许开发者直接调用Excel的内部功能,而COM则是一种组件重用技术,使得不同程序之间能够互相通信,例如在Excel中激活VBA宏或使用其他支持COM的对象。 描述中提到的“Excel4 C API”可能是指Excel早期版本的API,它提供了许多功能,如创建工作簿、工作表、单元格,以及执行公式等。而COM自动化则允许开发者使用其他编程语言(如C++)控制Excel对象模型,实现更复杂的功能,如读取和修改数据、创建图表、触发事件等。 在标签中,我们看到"VC6"指的是Visual C++ 6.0,这是一个经典的集成开发环境,广泛用于90年代末和21世纪初的Windows应用程序开发。"WinXP"和"Win2003"指的是操作系统平台,说明这些加载项是在这些旧版Windows系统上设计和测试的。"Windows"和"Win2K"进一步强调了跨平台兼容性。"Visual-Studio"和"MFC"表明除了VC6,也考虑到了后续版本的Visual Studio及其提供的MFC库,该库简化了Windows应用程序开发。 压缩包中的文件"Excel-Add-in-Using-Excel-C-API-and-COM.pdf"很可能是一个详细的技术文档,涵盖了如何构建和实现Excel加载项的步骤,包括设置开发环境、创建项目、编写代码、调试和部署。"EasyIF_demo.zip"和"EasyIF_src.zip"可能包含了一个示例加载项的可执行文件和源代码,供学习者参考和分析。 通过学习这个主题,开发者可以掌握如何: 1. 设置开发环境:安装必要的软件,如Visual Studio和Office SDK,配置好编译器和链接器选项。 2. 创建Excel加载项项目:了解加载项的架构,使用MFC或非MFC的方式创建项目。 3. 掌握Excel C API:学习如何声明并调用Excel4 C API函数,如`xlAutoOpen`、`xlAutoClose`等,以及如何处理Excel对象。 4. 使用COM自动化:理解COM接口,如`IDispatch`和`IUnknown`,以及如何通过`CoCreateInstance`创建和控制Excel对象。 5. 实现功能:编写代码实现特定功能,如自动填充数据、创建图表、执行复杂的计算等。 6. 调试与测试:学会在Excel中调试加载项,确保其在各种情况下都能正常工作。 7. 部署与发布:了解如何打包加载项,使其能在用户机器上安装和运行。 这个主题不仅适合有C++基础的开发者,也是对Excel自动化感兴趣的IT专业人士的重要参考资料。通过实践和理解这些知识点,开发者能够创建高效、定制化的Excel解决方案,提升工作效率。
2026-01-26 16:35:40 755KB WinXP Win2003 Windows
1
PaperLib PaperLib是一个插件库,用于与Paper特定的API(例如异步块加载)接口,并具有优美的后备功能,可保持与Bukkit和Spigot API的兼容性。 API 在PaperLib类中可以找到所有API调用作为静态util方法。 getChunkAtAsync public class PaperLib { public static CompletableFuture< Chunk> getChunkAtAsync ( Location loc ); public static CompletableFuture< Chunk> getChunkAtAsync ( Location loc , boolean gen ); public static CompletableFuture< Chunk> getChunkAtAsync ( World world , int x , int z ); public static CompletableFuture< Chunk> getChunkAtAsync ( World worl
2026-01-25 12:53:24 76KB minecraft library spigot paper
1
Qt框架下OBJ与STL模型文件加载与展示Demo:支持鼠标交互移动、缩放及旋转功能,Qt框架下的模型文件加载与交互操作:obj和stl文件实例的加载、鼠标移动、缩放与旋转演示,Qt加载模型文件obj或者stl实例,支持鼠标移动缩放旋转demo ,Qt加载模型文件obj/stl; 实例化模型; 支持鼠标操作; 缩放旋转demo,Qt加载OBJ/STL模型文件并支持鼠标操作demo 在Qt框架下实现OBJ与STL模型文件的加载和展示是一个涉及计算机图形学和用户交互技术的复杂任务。OBJ和STL是广泛应用于3D打印和3D建模领域的文件格式,分别代表了Wavefront Technologies开发的几何体模型标准和STEREOLITHOGRAPHY(立体光固化)文件格式。在Qt框架中加载这类文件,需要对Qt的图形视图框架、事件处理机制以及3D图形渲染有深入的理解。 该Demo演示了如何利用Qt框架实现对OBJ和STL模型文件的加载,并且通过鼠标交互实现了模型的移动、缩放和旋转功能。这一过程涉及到Qt中的多个模块,比如Qt 3D模块提供了用于3D图形渲染和场景管理的类和功能,而Qt的事件处理系统则负责捕获和响应用户操作,如鼠标点击、拖动等,从而实现对模型的交互控制。 在具体的实现过程中,首先需要读取OBJ或STL格式的文件。OBJ文件格式较为复杂,包含了顶点数据、法线、纹理坐标、材质属性等信息,而STL文件相对简单,主要包含三角形的顶点信息。在Qt中,可以通过文件I/O操作读取这些数据,然后使用适当的图形库(如OpenGL)将其渲染到3D视图中。 对于用户交互部分,Demo展示了如何处理鼠标事件来实现对3D模型的移动、缩放和旋转操作。这通常需要在Qt的事件系统中拦截鼠标事件,并根据用户的操作(例如,鼠标移动时改变模型的方向,滚轮事件来调整模型大小等)来动态调整模型的变换矩阵。变换矩阵是3D图形学中用于描述模型在空间中的位置、方向和大小的重要概念。 文档标题中提到的“柔性数组”可能是对Qt框架中某些动态数据结构的一种比喻,或特指某种用于存储模型数据的数组结构,其大小可以根据模型的复杂度和渲染需求进行调整。 在文件名称列表中,可以见到多个文档标题都与加载和交互演示相关,表明了该Demo不仅提供了代码实现,还可能包含了详细的说明文档,指导用户如何使用这些功能,并解释了背后的技术原理。这些文档可能包含了对Qt框架中相关类的介绍,如何使用这些类加载模型文件,以及如何处理图形渲染和事件响应的细节。 Qt框架下OBJ与STL模型文件加载与展示Demo不仅是一项实用性工具,也是深入学习Qt图形编程的良好案例,它展示了如何在跨平台的开发环境中实现复杂的3D模型交互操作,对开发者来说具有较高的参考价值。
2026-01-20 16:17:44 1.41MB 柔性数组
1
易语言进程内核操作源码,进程内核操作,加载驱动,取SSDT,枚举进程,枚举进程2,枚举线程,调用转向,s7r5jr57d,取进程路径,取进程名,提升进程权限debug,进程结束,内存清零,取文件名,取路径,填充,枚举内核模块,强力打开进程,枚举模块,UnHookDLL,提取错误代码,提取错
1
通过 OpenCV 加载视频文件 1.mp4,并使用 YOLOv8 模型进行姿态检测。它逐帧处理视频,检测人体关键点并绘制关键点及其连接。具体来说,代码首先加载 YOLOv8 模型并定义了关键点之间的连接关系。然后,它打开视频文件,并读取每一帧进行处理,检测出人体的关键点并绘制在帧上。最后,处理过的帧被写入到一个新的视频文件 out.mp4 中。通过 cv2.VideoWriter 对象将这些帧保存为输出视频,最终完成视频的姿态检测和保存。 在本篇技术文档中,我们将探讨如何利用Python语言结合OpenCV库与YOLOv8模型来实现视频文件中的人体姿态检测。具体步骤包括加载视频文件、加载YOLOv8模型、定义关键点之间的连接、逐帧读取与处理、检测人体关键点、绘制关键点及其连接,并最终将处理后的视频保存。 OpenCV是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和视频分析功能。在本例中,我们首先需要使用OpenCV库中的功能来加载视频文件。OpenCV的VideoCapture类可以用来捕获视频文件的每一帧,这是进行帧分析和处理的基础。 接着,YOLOv8(You Only Look Once version 8)是一个先进的实时对象检测系统,它能够快速准确地定位视频帧中的对象。尽管文档中未明确指出,但通常情况下,YOLOv8模型会以预训练的权重文件形式存在,代码首先需要加载这个预训练模型。加载模型后,接下来需要定义关键点之间的连接关系,这涉及到姿态估计的核心部分。通常在姿态估计中,我们关心的是人体关键点,如头、肩膀、肘部、手腕、髋关节、膝盖和脚踝等。YOLOv8模型的输出往往是一系列的坐标点,代表人体关键点的位置。 然后,代码将进入逐帧处理环节。这一步骤需要循环读取视频中的每一帧,并对每一帧运用加载的YOLOv8模型进行关键点检测。在检测到关键点后,需要将这些点绘制在视频帧上,通常会用线条将这些关键点连接起来,以便更好地展现人体的姿态。这一步骤在实际代码中通过调用绘图函数来实现,例如使用OpenCV的circle函数来标记关键点位置,line函数来连接关键点。 完成上述步骤后,每一帧都已添加了标记关键点和连接线的信息。这时,我们需要将这些帧写入到一个新的视频文件中,以便保存最终的姿态检测结果。这通常通过cv2.VideoWriter对象来实现,它允许我们将处理过的帧序列编码并保存为视频格式,如out.mp4。在这一步骤中,需要设置合适的视频编码格式和帧率等参数,以确保输出视频的质量和流畅性。 通过上述步骤,我们可以完成一个视频文件的人体姿态检测,并将结果保存为一个新的视频文件。这一过程不仅涉及到视频处理和计算机视觉知识,也融合了深度学习模型的应用,展示了如何将先进技术应用于现实世界的问题解决中。
2025-12-30 21:20:48 3KB python
1
简要中文翻译: 加载YOLOv8模型进行姿态检测。 定义人体关键点之间的连接关系和颜色。 检测关键点并绘制在视频帧上。 根据关键点之间的关系绘制连接线。 使用摄像头捕获视频并实时进行姿态检测。 显示带有关键点和连接的实时视频流。 按 q 键退出程序。 在深入探讨如何加载YOLOv8模型进行姿态检测之前,首先需要了解YOLOv8模型的背景与姿态检测的含义。YOLO(You Only Look Once)系列是一种流行的目标检测框架,因其速度快和准确率高而被广泛应用于实时视频处理任务中。而姿态检测是计算机视觉的一个分支,它旨在通过算法识别和跟踪人体各个部位的位置,如四肢和躯干等。 在此基础上,我们开始详细介绍如何操作: 1. 加载YOLOv8模型:首先需要获取预训练的YOLOv8模型文件,然后使用适当的数据加载代码将其读入内存。在Python环境中,通常使用像是OpenCV或者PyTorch这样的深度学习库,以方便地导入模型并进行后续处理。 2. 定义人体关键点与颜色映射:人体姿态检测中,关键点通常指的是人体各个关节和身体部位的中心点,如肩膀、肘部、腰部、膝盖等。这些点需要被准确地识别,以便于后续的分析和图形绘制。同时,为了在视频帧中清晰展示关键点,需要为每个关键点定义颜色,并将其映射出来。 3. 关键点检测与绘制:使用加载的YOLOv8模型对视频帧进行处理,模型会输出每个关键点的位置。这些位置信息将被用来在视频帧中绘制标记关键点的图形(通常为圆点)。这个过程需要对视频帧进行逐帧处理,以实现实时的姿态检测。 4. 关键点间连接关系的绘制:在关键点检测并绘制完成后,接下来的工作是根据人体解剖结构,将这些点连接起来。一般会定义一套规则,确定哪些点应该通过线条连接,并使用这些规则绘制出完整的姿态图谱。这一步骤是姿态检测中非常重要的一个环节,它将分散的关键点信息转化为了连贯的人体姿态表示。 5. 实时视频姿态检测:为了实现实时监控和检测,需要使用摄像头作为视频源。通过摄像头捕获连续的视频帧,应用前面提到的关键点检测和绘制算法,实时输出带有关键点和连接线的视频流。这通常需要将整个检测过程封装在一个循环中,并且该循环以固定的频率运行,以保证与视频帧的同步。 6. 控制程序退出:为了方便使用者操作,程序需要响应用户的输入,例如在本例中,按下"q"键可以退出程序。 以上六个步骤共同构成了加载YOLOv8模型进行姿态检测的完整流程,涉及到了从模型加载、关键点定义、视频处理到用户交互等关键技术环节。在实际应用中,还可能会涉及一些额外的优化步骤,比如算法调优、模型训练等,以提高检测的准确率和速度。 整个过程是一个结合了计算机视觉、深度学习和实时视频处理技术的复杂任务,需要多种技术的综合运用才能完成。而通过Python编程语言及其生态中的各类库,可以较为便捷地实现上述功能。
2025-12-30 20:33:59 3KB python
1
CAD技术在工程绘图和地理信息系统中扮演着重要角色,尤其在处理和分析影像图方面。为了提高工作效率,开发者们开发了多种插件来扩展CAD软件的功能,使其能够加载和处理影像图。本篇内容将详细介绍四款CAD影像图加载插件的功能和用途。 "批量影像图导入cass(yxt).lsp"插件专门针对CAD软件设计,能够实现批量导入影像图到CAD环境中。通过这一插件,用户可以在短时间内导入大量影像数据,大幅度提升工作效率。它支持多种影像格式,并且在导入过程中可以对影像进行初步的处理和调整,使之更加符合工程需要。 "cad插入带坐标tif文件(tif命令).VLX"插件则是为处理具有地理坐标信息的tif格式影像图而开发的。这一插件利用CAD软件的VLX技术,提供了一个专门的命令接口,允许用户通过简单的命令操作来加载带有地理坐标的tif文件。这在进行地理空间分析或工程测绘时非常有用,因为它能够将影像图精确地放置在CAD图纸中的正确位置。 "水经注CAD智能影像加载插件(aimg).VLX"提供了一个智能化的解决方案,使CAD用户能够轻松加载和管理大量的影像数据。它不仅支持多种影像格式,还内置了智能分析工具,能够自动调整影像的色彩和对比度,以适应不同的绘图环境和要求。此插件特别适合于进行大规模地图绘制和遥感影像分析的专业人士使用。 "影像导入CAD插件(insg).VLX"为CAD用户提供了一个高效而直接的方式来加载影像图。它通过直观的操作界面,允许用户快速导入影像,并且可以在导入过程中调整影像的大小和分辨率。这一插件特别注重操作的便捷性,让用户即使在面对复杂的项目需求时,也能够轻松应对。 这四款CAD影像图加载插件各有特色,分别针对不同的应用场景和用户需求。它们大大增强了CAD软件处理影像数据的能力,使得相关专业人员能够更加高效、准确地完成设计和分析工作。
2025-12-30 14:21:03 6KB CAD CASS
1
LangChain RAG技术是一种基于远程调用的问答系统,它能够从文档中提取和生成信息,以回答用户的问题。在实战操作过程中,我们从文档加载开始,逐步深入到智能问答环节,让机器能够理解并回答复杂问题,从而实现人机交互。在本篇文章中,我们通过人事管理流程章程的范本,展示了如何在具体场景下应用LangChain RAG技术。 人事管理流程章程是公司人事管理活动的重要依据,它涵盖了总则、适用范围、基本原则、管理机构与职责、招聘与录用、入职管理等多个方面。总则部分明确了制定人事管理章程的目的、宗旨以及法律依据,确保人事管理活动的透明度、一致性与合规性。适用范围则界定了章程所适用的对象和特殊情况的处理方式。基本原则部分阐述了人事管理活动所应遵循的七项原则,包括合法合规、公平公正、人岗匹配、竞争择优、激励与约束并重、员工发展、沟通协商等。 在管理机构与职责方面,详细列出了公司最高管理层、人力资源部以及各业务部门的具体职责,形成了一个覆盖整个人事管理环节的职责体系。招聘与录用章节细化了招聘需求与计划的制定、招聘渠道与方式的确定、甄选与录用的标准流程。入职管理章节则具体说明了新员工入职手续的办理流程。 整个章程的制定与实施是人事管理工作高效、规范运转的基础,它有助于优化人力资源配置,保障公司与员工的合法权益,营造和谐稳定的劳动关系,提升组织效能与核心竞争力。章程中的每一项内容都对人事管理工作的顺利进行至关重要,从招聘、录用到员工入职,再到后续的管理、培训、发展等,都为人事管理工作提供了清晰的操作指南。 通过LangChain RAG技术,我们可以将这样详细、复杂的人事管理流程章程进行编码,转化为可查询、可交互的问答形式,使得人事管理工作中遇到的各种问题能够得到快速的解答。这种技术的应用,对于提升人事管理工作效率、确保人事决策的科学性和合理性具有重要意义。 LangChain RAG技术在人事管理领域的应用不仅提高了工作效率,还增强了人事管理的透明度和公正性。通过对人事管理流程章程的详细分析和编码,实现了人事管理的智能化,为人事管理的现代化转型提供了有力的技术支持。在未来,随着人工智能技术的进一步发展,类似的技术有望在更多领域实现创新应用,推动工作效率和质量的不断提升。
2025-12-20 07:07:54 21KB
1
在本文中,我们将深入探讨如何在Xilinx Artix-7系列的xc7a100tffg484-2 FPGA芯片上利用ICAP(内部配置访问协议)原语来实现SPI(串行外围接口)Multiboot加载。Multiboot功能允许设备在启动时选择不同的固件或配置,这在开发、调试和应用多样化场景中非常有用。 我们需要了解Artix-7 FPGA系列。Artix-7是Xilinx公司的7系列FPGA家族的一员,提供了一系列低功耗、高性能的解决方案,适用于各种嵌入式计算和网络应用。xc7a100tffg484-2是一款具有100,000个逻辑单元的中型FPGA,采用28nm工艺制造,封装形式为FFG484,具有484个I/O引脚。 接下来,我们聚焦于ICAP(内部配置访问协议)。ICAP是Xilinx FPGA内部的一种硬件接口,它允许用户在运行时通过专用的硬件原语访问和修改配置数据。这对于动态配置和固件更新至关重要。ICAP原语提供了对配置存储器的访问,使得开发者可以实现如Multiboot这样的高级功能,即在FPGA启动时从多个不同的存储介质加载不同的配置。 SPI(串行外围接口)是一种常见的通信协议,用于连接微控制器和各种外设,包括非易失性存储器(如闪存),在FPGA应用中常用于存储配置比特流。在Multiboot情境下,SPI接口可以连接到多个闪存设备,每个设备存储一个不同的配置文件。通过选择不同的SPI设备,FPGA可以在每次启动时加载不同的配置。 实现SPI Multiboot加载的过程通常包括以下步骤: 1. **设计ICAP原语**:在VHDL或Verilog设计中,需要编写ICAP原语来与SPI接口交互,读取并加载配置数据。 2. **配置SPI控制器**:设计一个SPI控制器,使其能够与多个SPI设备进行通信,并根据需求选择加载哪个设备的配置。 3. **地址映射**:确定如何将SPI设备的地址映射到Multiboot选择信号,以便在启动时选择正确的配置。 4. **初始化序列**:在FPGA启动时,执行一个初始化序列,该序列根据预定义的规则(如GPIO输入、内部寄存器状态等)选择SPI设备。 5. **加载过程**:通过ICAP原语,从选定的SPI设备读取配置比特流并加载到FPGA的配置存储器中。 6. **验证**:完成加载后,验证FPGA是否正确配置并按预期工作。 通过这种方式,开发者可以灵活地在不同场景下切换FPGA的行为,无需物理更改硬件。例如,在开发阶段,可以快速在多个固件版本之间切换,而在生产环境中,可以轻松部署软件更新或针对特定任务优化的配置。 基于Artix-7 xc7a100tffg484-2芯片使用ICAP原语实现SPI Multiboot加载是一项高级的FPGA设计技术,它结合了ICAP的灵活性和SPI的通用性,为系统设计带来了巨大的便利。理解并掌握这一技术,对于任何想要在FPGA开发中实现高效、可扩展解决方案的工程师来说都是至关重要的。
2025-12-16 11:35:32 35.44MB FPGA
1
汉印A300 汉印A300L 汉印A300E通用字库,字库GBK_V1.0.3.bin,需要汉印管家加载即可,对于打印机乱码下载升级安装字库文件即可。
2025-12-02 19:42:24 3.74MB
1