应用领域/适用场景:乘用车 商用车 方案亮点:传感器通过无线信号把压力温度,电池电压等信息发送到仪表台,驾驶员实时查看轮胎状态,保障行车安全 方案详情:发射端采用英飞凌SP370, 接收端采用TDA5235,315M/433M均可。支持太阳能式,记录仪集成式,蓝牙+APP,串口输出+上位机式,也可以按要求订做。 查看方案详情 性能指标: 发射板 315/433.92Mhz ±35khz,FSK,8dbm 接收板 -110dbm/10mA(working) 物料清单 TDA5235,SP370-26-106-0
2026-01-22 21:22:20 5.41MB 汽车电子 压力传感器 电路方案
1
# 基于ESP32和MQTT协议的温度和压力监测系统 ## 项目简介 本项目是一个基于ESP32的IoT项目,通过连接WiFi,利用MQTT协议进行消息的发布和订阅。借助BMP180传感器获取温度和压力数据,并能通过控制GPIO引脚对外部设备如LED灯和电机等进行控制。项目涵盖嵌入式开发、WiFi通信、MQTT协议以及传感器数据处理等多领域。 ## 项目的主要特性和功能 1. 可让ESP32连接家庭或办公室的WiFi网络,实现与云端或本地设备的通信。 2. 采用MQTT协议进行消息的发布和订阅,适应低带宽、高延迟或不稳定的网络环境。 3. 利用BMP180传感器获取温度和压力数据,并实时通过MQTT发布。 4. 能够通过GPIO引脚控制外部设备,实现基于MQTT消息的LED亮度调节和电机控制功能。 ## 安装使用步骤 ### 前提准备 确保已配置好ESPIDF开发环境,包含ESP32开发板和相关工具链。 ### 步骤
2026-01-16 20:12:46 1.81MB
1
为了保证被保护层瓦斯的消突和治理工作,掌握保护层开采的卸压效果和预测卸压瓦斯的主要分布区域,运用UDEC离散元模拟得到了下保护层开采后被保护层的卸压效果、瓦斯运移规律及分布情况,并根据模拟结果相应地提出了留巷钻孔法抽采卸压瓦斯,实现了无煤柱开采,消除了被保护层应力集中区煤与瓦斯突出危险威胁。经现场实测抽采后3号煤层瓦斯压力降低了1.36 MPa,瓦斯含量降低了9.51 MPa,抽采效果良好。
1
在分析煤层结构和应力场特点的基础上,确定出了穿层钻孔起裂注水压力计算方法,并指出该压力不仅取决于侧向应力系数的大小,而且还取决于组成钻孔围岩的性质,总体表现出在径向上受最弱煤分层的控制,在轴向上则受最弱层理面的控制.在起裂位置上,轴向受控于最弱层理面,在径向上则受控于煤的最小抗拉强度和垂直侧向应力系数.
1
课程主要目录: 1:Jmeter 安装及环境配置 2:Jmeter 目录及配置文件说明 3:Jmeter 各大组件介绍说明 4:实战项目环境搭建 5:脚本录制之 badboy 6:脚本录制之 jmeter 代理 7:脚本录制之移动端APP录制 8:Fiddler抓包实战 9:移动端抓包实战 10:脚本增强之参数化(多方式实现) 11:脚本增强之高级参数化 12:脚本增强之关联 13:脚本增强之关联的高级应用 14:脚本增强之集合点、思考时间 15:脚本增强之断言 16:脚本增强之逻辑控制 17:Jmeter之IP欺骗 18:命令行压测及生成报告 19:Jmeter之分布式压测 20:jm eter扩展插件 21:自己动手开发jmeter插件 22:FTP协议实战 23:WebService协议实战 24:JDBC协议实战 25:JDBC协议实战增删改查 26:JDBC协议实战高级操作 27:Jmeter4.0的一些更新
2025-12-24 23:44:04 185B Jmeter 性能测试 压力测试
1
TM Pulse技术模块在液压阀上的应用是现代液压控制系统中的一个重要应用实例。TM Pulse模块能够有效地控制液压系统的压力,保证系统中压力的稳定性和精确性。具体来讲,TM Pulse模块能够通过脉冲宽度调制(PWM)技术来控制液压阀,特别是比例阀的工作状态,从而实现精确的压力控制。 TM Pulse模块能够在液压系统中产生受控电流,使得比例阀能够精确地调节其开启的程度。这种电流控制方式通过PWM来实现,即通过调节电流脉冲的宽度来控制比例阀的开闭,进而影响液压系统中的压力。TMPulse2x24V工艺模块能够与SIMATICS7-1516CPU进行通信,实现对液压系统的压力控制。 在SIMATICS7-1516CPU中,包含了“PID_Compact”软件控制工艺对象。该控制对象能够根据液压系统的实际压力情况,生成TMPulse2x24V电流输出的设定值。这样,TMPulse2x24V工艺模块就可以根据这些设定值来调节电流,实现对比例阀的精确控制。 此外,SIMATICS7-1516CPU还内置了一个线性化块,用于处理比例阀可能出现的非线性问题,以确保液压系统的压力控制能够更加精准。通过这种方法,控制系统可以基于当前液压系统的压力,动态生成电流设定值,使得液压系统能够在不同的工作条件下都能保持稳定的压力输出。 TMPulse2x24V技术模块提供了一种创新的方式来优化比例阀的控制性能。通过在比例阀上叠加一个校正信号,使得比例阀的启动扭矩得以减少,从而提高其响应速度和控制精度。这在减少能耗和延长液压元件使用寿命方面具有显著效果。 在系统构成方面,TMPulse2x24V与SIMATICS7-1516CPU形成了一个完整的控制回路。该回路通过PROFINET网络进行通信,采用了工业通信中先进的同步实时技术(IRT)。这种通信方式可以提供更快的响应速度和更高的数据传输可靠性,这对于实时控制液压系统是至关重要的。 TMPulse2x24V模块的PWM模式允许它与集成的“电流控制”功能和“抖动”功能相互作用。抖动功能能够减少阀在开启时产生的振动和噪音,这不仅提高了系统的稳定性,而且还有助于延长液压系统的使用寿命。利用这种技术,比例阀能够更加平稳地开启和关闭,进一步提升了整个液压系统的性能。 文件中提到的“用户程序”、“工艺对象”、“线性化块”以及“PID_Compact”软件控制等术语,指出了该液压控制系统是一个高度集成和自动化的过程控制系统。用户程序能够在系统发生偏差时,自动调节PWM信号,从而控制液压系统压力保持在设定值。而“工艺对象”则是一个抽象的控制系统概念,它可以集成不同类型的传感器、控制器和执行器,以实现对特定工艺参数的实时监控和调节。 通过使用TMPulse2x24V模块,液压控制系统可以在没有额外控制电子设备的情况下直接控制比例阀,这使得整个系统的结构更加简洁,减少了成本和维护的复杂性。同时,这种模块化的设计方式也使得系统的扩展和升级变得更加方便。 总而言之,TM Pulse技术模块在液压阀中的应用是工业自动化领域的一个先进案例,它通过精确的电流控制、优化的控制算法和创新的通信方式,为液压系统提供了一个稳定、高效的控制方案。这种技术的应用对于提高工业设备的性能和可靠性,降低能耗和维护成本,具有重要的实际意义。
2025-12-24 09:39:49 349KB
1
在现代电子工程领域,利用仿真软件进行电路设计已经成为了一种常态。Multisim是一款功能强大的电路仿真软件,它可以进行电路设计、仿真以及分析。在设计压阻式压力传感器电路时,利用Multisim能够模拟实际电路的性能和响应,这对于优化电路设计,降低成本以及缩短研发周期都具有重要意义。 在设计电路之前,需要了解压阻式压力传感器的基本原理。压阻式传感器通常由半导体或金属材料制成,其电阻值会随着受到的压力变化而变化。这一变化可以通过相应的电路进行检测和放大,从而实现压力的测量。 在Multisim中进行电路设计,首先要建立电源单元,为电路提供稳定的工作电压。电源单元的设计需要考虑到电压稳定性和电流供应能力,以保证电路能够正常工作。接着,是压力传感器单元的设计,这一部分是整个电路的核心。在Multisim中,我们可以通过软件自带的模型或者用户自定义模型来模拟实际的压阻式传感器。设计时需考虑传感器的灵敏度、量程以及输出特性。 放大电路单元是将传感器单元的微弱信号放大到可以处理的程度。在设计放大电路时,需要选择合适的放大器类型和参数,如运算放大器的选择、反馈电阻的计算等,以达到最佳的放大效果。此外,滤波电路单元也是必不可少的,因为压力传感器输出的信号往往会含有噪声和干扰,滤波电路的作用就是去除这些不需要的信号成分,保证输出信号的准确性和稳定性。 在设计上述各个单元时,Multisim提供了一系列工具,包括丰富的元件库、电路仿真分析工具、信号源等,这些都大大简化了设计流程,提高了设计的准确性和效率。设计完成后,还可以通过仿真验证电路的实际表现,比如测量电路的响应时间、频率响应特性、温度漂移等参数,进而进行必要的调整和优化。 除了电路设计外,Multisim还支持对电路板进行布局设计,这为实际生产提供了参考。在电路板设计时,要考虑元件的布局、走线以及散热等因素,确保电路板的稳定性和可靠性。 此外,文档资源下载地址和密码的提及,暗示了该仿真设计可能与网络资源的下载和使用相关,可能是为了获取特定的仿真模型或者数据。这一点对于使用Multisim进行设计的工程师来说,获取必要的资源同样是完成设计任务的重要一环。 在电子工程教育和实际应用中,压阻式压力传感器的电路设计和仿真分析是重要的一课。基于Multisim软件的仿真设计不仅可以帮助学生和工程师理解电路的理论知识,更能够通过实践提高解决问题的能力。通过在Multisim中进行压阻式压力传感器电路的设计和仿真,可以加深对传感器技术的理解,并为实际应用提供了强大的技术支持。
2025-12-14 19:38:55 56KB 压力传感器
1
内容概要:本文详细介绍了利用Matlab进行直齿轮弹流润滑数值模拟的方法,重点探讨了油膜压力分布和厚度变化规律。首先设置了基础参数如压粘系数、弹性模量等,并通过构造随转角变化的曲率函数来模拟实际啮合过程。接着,采用中心差分和牛顿迭代方法求解Reynolds方程,同时考虑了弹性变形的影响。为了提高计算效率,文中提出了使用Toeplitz矩阵代替常规循环计算弹性变形的技术。此外,还讨论了载荷平衡的实现技巧以及数值发散的应对措施。最后,通过动态可视化展示了油膜参数在整个啮合周期内的变化趋势。 适合人群:机械工程专业学生、从事齿轮设计与制造的研究人员和技术人员。 使用场景及目标:适用于研究齿轮传动系统的润滑性能,特别是关注油膜形成机制及其对传动效率和寿命的影响。通过对不同工况下的油膜行为进行建模和分析,可以帮助优化齿轮的设计和维护方案。 其他说明:文中提供了完整的Matlab代码示例,便于读者理解和复现实验结果。同时提醒读者注意一些潜在的问题,如松弛因子的选择、边界条件的处理等。
2025-12-02 09:01:27 149KB Matlab 数值模拟
1
COMSOL模拟流固传热,CO2注入井筒过程的温度压力变化以及对于地层温度的干扰,考虑油管壁,套管环空流体,套管壁,水泥管的导热作用 ,核心关键词:COMSOL模拟; 流固传热; CO2注入; 井筒过程; 温度压力变化; 地层温度干扰; 油管壁; 套管环空流体; 套管壁; 水泥管导热。,COMSOL模拟CO2注入井筒传热过程:温度压力变化与地层温度干扰分析 在现代石油工程和地热开发领域,COMSOL模拟技术的应用越来越广泛,它能够帮助工程师在理论和实际应用中模拟复杂的物理过程。其中,流固传热模拟是一个重要的研究方向,尤其是在二氧化碳(CO2)注入井筒过程中,温度和压力的变化以及对地层温度的干扰,是影响井筒安全和注气效率的关键因素。 通过使用COMSOL软件,可以建立一个包含油管壁、套管环空流体、套管壁和水泥管在内的多物理场模型。在这个模型中,需要考虑的主要因素包括流体的动力学行为、固体的热传导性能以及流体与固体之间的热交换。在CO2注入井筒的过程中,随着二氧化碳的注入,井筒内的温度和压力会发生变化,这些变化不仅会影响井筒结构的稳定性和安全性,还会对周围地层温度产生干扰,进而影响地层的流体运动和储层的稳定性。 温度和压力的变化对井筒结构的破坏往往是通过材料的热膨胀和压力引起的应力变化来体现的。当温度升高时,材料会膨胀,如果膨胀受到约束,就会在材料内部产生热应力。同样,井筒内的高压也会对井筒壁体施加力,产生压缩应力。这些应力若超出材料的承载能力,就会导致井筒的损坏,甚至引发井喷等严重事故。 此外,井筒内的流固传热过程还与周围地层有着密切的联系。CO2注入会引起地层温度的改变,这种改变会通过热传导的方式影响到较远的储层区域。在某些情况下,这种温度变化可能会促进或抑制储层中的化学反应,改变地层的渗透率,甚至影响到流体的相态和流动特性,对采收效率产生显著影响。 在进行COMSOL模拟时,必须准确设定各种材料的物理属性,如导热系数、比热容、热膨胀系数以及流体的热物性参数等,同时考虑实际工况中可能遇到的边界条件和初始条件。通过模拟分析,可以预测CO2注入井筒过程中的温度压力变化规律,评估不同操作条件下的安全性和效率,并为工程设计提供理论依据。 为了全面掌握整个井筒的传热和流体流动情况,模拟通常需要采用迭代和细化网格的方式,以确保模拟结果的精确性。此外,模拟还需要对长期运行过程中可能出现的最不利情况做出评估,如井筒的疲劳寿命和潜在的安全风险。 通过这次模拟分析,我们可以得出结论:在CO2注入井筒的过程中,温度和压力的变化以及它们对地层温度的干扰是影响整个工程安全和效率的关键因素。通过深入研究这些因素,并利用先进的模拟工具如COMSOL进行分析,可以为工程设计和操作提供有力的技术支持,确保井筒的安全和经济性。
2025-11-29 21:42:25 1.17MB 数据仓库
1
内容概要:本文详细介绍了利用COMSOL软件对CO2注入井筒过程中涉及的流固传热及压力变化进行多物理场耦合模拟的研究。研究重点在于井筒内部不同材料(如油管、套管、水泥环)之间的热传导特性及其对地层温度和压力的影响。文中通过具体的几何建模、材料属性设定、边界条件定义以及求解器配置等方面展示了完整的模拟流程,并讨论了关键参数的选择和优化方法。最终,通过对模拟结果的分析,揭示了CO2注入过程中可能出现的温度骤降、压力波动等现象及其背后的物理机制。 适合人群:从事石油工程、地质工程、环境科学等领域研究的专业人士和技术人员。 使用场景及目标:适用于需要深入了解CO2注入井筒过程中的复杂热力学行为的研究人员,旨在提高对井筒内部传热和压力演化的认识,从而优化CO2封存项目的实施。 其他说明:文章提供了详细的建模步骤和代码片段,有助于读者复现实验并进一步探索相关问题。此外,还强调了一些常见错误和注意事项,帮助避免模拟过程中可能出现的问题。
2025-11-29 21:41:46 1.48MB
1