基于FPGA 实现USART(universal synchronous asynchronous receiver and transmitter)同步串口控制器-主机。并带有仿真激励,可以模拟一帧数据发送。同步串口参数如表1-1所示。开发工具Vivado 2018.3,使用Verilog HDL编写,FPGA器件xc7a100tfgg484。 在现代电子系统中,FPGA(现场可编程门阵列)是一种常用的高度灵活的数字逻辑设备。它允许设计者在硬件层面上实现各种复杂的逻辑功能,进而实现特定的电子系统。在诸多应用中,FPGA在通信接口控制器的实现方面尤为突出,因为它们可以高速执行复杂的协议转换和数据处理任务。USART(通用同步/异步接收/发送器)是一种广泛使用的串行通信接口,它能够以同步或异步的方式发送和接收数据。SSI(同步串行接口)是另一种用于短距离通信的串行接口,主要用在电子系统内部设备之间的数据传输,比如模拟/数字转换器和数字/模拟转换器等。 本文档涉及的主题是“基于FPGA实现同步串口控制器-主机”,这表明该控制器是同步类型的USART接口。文档详细说明了该控制器的实现是基于Xilinx的Vivado设计套件,版本为2018.3。Vivado是Xilinx公司推出的一款先进的设计工具,它支持FPGA的设计、仿真、实现和分析。在FPGA开发中,Verilog HDL(硬件描述语言)是一种常用的编程语言,用于描述和实现数字电路和系统的功能。文档中还提到了使用的FPGA器件型号为xc7a100tfgg484,这是Xilinx公司的一款中等规模的FPGA,具备丰富的资源和较高的处理速度,适用于实现较为复杂的同步串口控制器。 USART同步串口控制器-主机的设计和实现,意味着这个控制器能够作为主机来控制USART通信协议中的数据传输过程。它能够管理数据帧的发送、接收、格式化以及协议要求的其他功能。在同步模式下,数据传输过程中,时钟信号会从发送方传到接收方,确保两者之间能够同步工作,这对于保持数据的准确性和可靠性非常关键。该控制器还配备了仿真激励,意味着它能够模拟一帧数据的发送过程,这是硬件设计验证的重要环节,可以在不依赖实际硬件的情况下测试和验证控制器的功能和性能。 这种控制器的实现对通信、数据采集和工业控制系统等领域的应用具有重要意义。例如,在工业自动化控制系统中,这样的同步串口控制器-主机能够实现与传感器、执行器等外围设备的高效通信,从而提升整个系统的响应速度和稳定性。在通信领域,它能够作为主机与其他设备进行数据交换,实现更加快速和准确的数据传输。 此外,由于FPGA的可编程特性,该同步串口控制器在设计完成后还可以根据实际需要进行修改和升级,这为系统提供了极大的灵活性。随着技术的发展,未来的FPGA可能会集成更多的功能,进一步简化通信控制器的设计和实现,提高系统的性能和效率。
2025-07-31 20:15:33 7.91MB verilog
1
PC端通过串口调试助手发送给异步串口接收模块UART_rx.v,完成串并解析后通过wire [7:0] pi_data ;wire pi_flag ;送入同步串口(SSI)发送模块usart_master.v。考虑到同步串口(SSI) 波特率是10Mbps,远大于异步串口波特率是115200bps,因此无需做数据缓存。同步串口参数如表1-1所示,异步串口参数如表1-2所示。开发工具Vivado 2018.3,使用Verilog HDL编写,FPGA器件xc7a100tfgg484。 在现代电子通信系统中,数据传输的接口标准多种多样,而异步串口(UART)和同步串口(SSI)是两种常见的串行通信接口。基于FPGA的RS422异步串口转二线同步串口(SSI)的接口转换工程,是一种利用现场可编程门阵列(FPGA)技术,将低速异步串口通信转换为高速同步串口通信的解决方案。通过这样的转换,可以实现不同通信标准之间的数据互通,对于提升设备的兼容性和扩展性具有重要意义。 在该工程中,使用了Verilog硬件描述语言来编写转换逻辑。Verilog是一种广泛应用于电子系统设计的硬件描述语言,它允许设计者通过文本形式描述数字电路的结构和行为,进而通过EDA工具实现电路设计的仿真和综合。工程中涉及到的关键Verilog文件包括UART接收模块 UART_rx.v 和SSI发送模块 usart_master.v。UART_rx.v 负责接收来自PC端通过串口调试助手发送的异步串口数据,进行串并转换,然后将数据通过特定的信号线pi_data和pi_flag发送给SSI发送模块。SSI发送模块则负责将这些数据通过同步串口发送出去。 在设计中,SSI接口被配置为高速模式,其波特率为10Mbps,而UART接口的波特率为115200bps。由于SSI接口的波特率远大于UART接口,因此在本设计中无需额外的数据缓存。这种速率差异的处理是通过硬件设计中的时序控制和数据流管理来实现的,确保在不丢失数据的前提下,实现快速而稳定的通信。 此外,整个工程是基于Xilinx的Vivado 2018.3开发环境进行开发的,使用的是FPGA器件xc7a100tfgg484。Vivado是一款功能强大的FPGA设计套件,它提供了从设计输入到设备配置的一整套解决方案,能够支持高层次的综合、仿真、时序分析、以及硬件配置等多个环节。xc7a100tfgg484则是Xilinx公司生产的一款Artix-7系列的FPGA器件,具有丰富的逻辑资源和I/O端口,适用于多种应用场景。 在该工程的设计文档中,通常会包括两个接口的参数说明表。表1-1中会详细描述SSI同步串口的工作参数,如波特率、数据位宽、停止位、校验位等,这些参数需要与外部设备的SSI接口参数相匹配。表1-2则会介绍UART异步串口的参数,包括传输速率、帧格式、流控等,这些参数需要与PC端的串口调试助手设置一致。通过这样的参数配置,可以确保数据能够在UART和SSI之间准确无误地传输。 整个工程的实现不仅展示了FPGA在接口转换方面的灵活性和高效性,还体现了在高速和低速通信系统之间进行数据交换时对精确时序控制的需求。此类型项目不仅对于通信系统设计者具有参考价值,对于深入理解FPGA在通信协议转换中的应用也十分有益。
2025-04-10 10:45:08 2.3MB FPGA verilog
1
DSP技术及应用实习-离散余弦变换(DCT)算法。
2022-06-08 13:43:02 959KB DSP 同步串口
1
针对电缆传输模拟信号距离短、抗干扰能力差等问题,利用同步串行接口传输数据数率高的特点,设计了一种通过FPGA接收远端设备发来的同步串行数据,进行容错、解码和缓冲处理,控制多通道D/A转换器输出的信号传输接收转换模块,实现了同步串行接口传输多通道D/A信号,用两对双脚线或光缆就可实现多通道模拟信号的远距离传输。实验结果表明,完成四通道D/A信号传输接收转换时间为65μs,传输速率15kHz,传输距离提高不低于100%。模块采用24V电源供电,ADAM结构,导轨安装,符合工业现场需求。
2022-05-25 23:44:19 1.86MB FPGA; D/A信号; 同步串口; 高速传输
1
1 引言   电信网和因特网是两大网络系统,必然存在两个网络数据或信息的互通问题,例如:VoIP、混合视频会议等新业务。E1接口和以太网接口分别是电信网和因特网使用最为普遍的接入端口,设计一个嵌入式网关设备,通过这两种端口将两大网络连接起来就显得尤为迫切、重要。本文介绍的AT91RM9200处理器处理能力强、接口丰富,内部集成了同步串口和以太网接口,是嵌入式小型网关控制器的理想选择。 2 AT91RM9200和DS21554   AT91RM9200内部集成了一个ARM920T—ARM Thumb处理器,在180 MHz时钟时运行速度高达200 MI/s;内部有16 KB的数据Cache、
1
详细的讲解了DSP c2000系列的串行外设接口的定义、工作原理、以及使用方法。
2021-12-05 18:09:12 127KB DSP28XX SPI 同步串口
1
MFC_Win32API_同步串口.rar,MFC_Win32API_同步串口.rar,源代码
2021-11-23 15:21:22 32.06MB win32API 同步串口 源代码
1
这是一个基于Verilog的多路同步串口的FPGA传输程序,有详细的程序说明,并通过测试。
2021-09-09 14:34:45 20KB FPGA
1