SPI (Serial Peripheral Interface) 是一种常见的串行通信协议,常用于微控制器如 ARM 和 FPGA 之间的数据传输。在本文中,我们将深入探讨 ARM 通过 SPI 协议与 FPGA 进行通信的细节,包括管脚分配、依赖性、中断处理以及 SPI 寄存器的配置。 1. SPI 背景知识 SPI 是一个同步串行接口,由主机(Master)控制数据传输速率和时序,从机(Slave)按照主机的指令进行数据发送或接收。SPI 协议通常包含四个信号线:MISO(主机输入/从机输出)、MOSI(主机输出/从机输入)、SCK(时钟)和 SS(片选信号),在某些配置中可能还包括额外的 CS(芯片选择)信号。 2. ARM 的 SPI 功能设计 在 ARM 设备中,SPI 功能通常集成在片上系统(SoC)中,允许与外部设备(如 FPGA)建立通信。以下是关键的设计方面: 2.1 管脚分配 在实现 SPI 通信时,需要正确地分配 ARM 的 SPI 端口到相应的 I/O 引脚。例如,MISO、MOSI、SCK 和 SS 需要连接到 FPGA 上相应的 SPI 接口。 2.2 与其他组件的依赖性 2.2.1 I/O 线 确保 I/O 线路正确配置,具有正确的电平转换和驱动能力,以适应 FPGA 的接口要求。 2.2.2 能量管理 SPI 通信可能受制于 ARM 内部电源管理策略,如低功耗模式或时钟门控,需要确保在通信过程中供电和时钟是激活的。 2.2.3 中断 中断是提高系统效率的关键,当传输完成或出现错误时,ARM 可以通过中断通知处理器进行后续处理。 2.3 SPI 寄存器详解 SPI 控制寄存器(SPI_CR)、模式寄存器(SPI_MR)、传输数据寄存器(SPI_TDR)、片选寄存器(SPI_CSR)和外围时钟使能寄存器(PMC_PCER)等是用来配置和控制 SPI 模块的。 2.3.1 SPI Control Register(SPI_CR) SPI_CR 用于启动或停止 SPI 传输,设置传输模式,以及处理其他控制功能。 2.3.2 Mode Register(SPI_MR) SPI_MR 用来设置 SPI 工作模式,如主模式或从模式,数据宽度,时钟极性和相位等。 2.3.3 Transmit Data Register(SPI_TDR) SPI_TDR 用于写入待发送的数据,并在传输完成后自动清空。 2.3.4 Chip Select Register 0(SPI_CSR0) SPI_CSR0 用于配置特定从机的片选信号,如延迟时间、数据校验等。 2.3.5 Peripheral Clock Enable Register(PMC_PCER) PMC_PCER 用于启用或禁用 SPI 模块的时钟,确保在操作前 SPI 接口已激活。 2.4 SPI 寄存器配置 2.4.1 管脚复用 配置 ARM 的 GPIO 管脚为 SPI 功能,可能需要在系统级的配置寄存器中设定。 2.4.2 SPI 使能 在 SPI 控制寄存器中设置适当的标志来启用 SPI 接口。 2.4.3 时钟 通过模式寄存器设置 SPI 时钟的速度和相位,以匹配 FPGA 的时序要求。 调试 SPI 通信时,需关注信号的同步性、数据完整性、时钟速度匹配以及片选信号的正确管理。通过理解并精确配置这些参数,可以有效地建立 ARM 与 FPGA 之间的 SPI 通信链路,从而实现高效的双向数据传输。
2025-04-30 16:54:05 1.13MB arm fpga开发 网络
1
本工程是我在2022年6月11日上传的“驱动程序:硬件SPI控制AD7124”代码的改进版本,解决了下列问题: 1. 提高了AD7124在每秒的采样次数; 2. 解决了在PGA=1的情况下,采集大于+2V和<-2V出现的失真问题; 3. 优化了主程序架构,使main.c文件内的代码更加简洁; 4. 优化了AD7124时钟速率,AD7124的读取速率最大达到1.125MHz。 IDE:Keil MDK5; 硬件:STM32F103C8T6,所用SPISPI2; 未使用AD7124的同步模式。 在数字信号处理和模拟系统集成领域中,AD7124是一个高性能、低噪声、多通道模拟前端(AFE)。它的主要用途是为传感器提供精确的信号调理,从而能够将物理量转换为数字信号。AD7124能够执行精确的模数转换,并且通过硬件SPI(串行外设接口)与微控制器通信。硬件SPI是一种常用的通信协议,广泛应用于微控制器与外设设备之间的高速数据传输。该协议通过较少的引脚来实现数据通信,提高了通信效率并降低了系统成本。 本工程是在原有基础上的改进版本,改进点包括提高了AD7124的每秒采样次数,这是通过优化内部寄存器的设置来实现的,从而提高了数据采集的频率。在编程上,对于PGA(可编程增益放大器)的设置为1时出现的+2V和-2V信号采集失真问题,进行了细致的调试和算法优化,以确保信号在较大动态范围内的准确度。同时,对主程序的架构也进行了优化,使得main.c文件的代码更加清晰和有条理,便于后续的维护与开发。此外,通过优化AD7124的时钟速率,使得其最大读取速率达到了1.125MHz,这进一步提升了数据处理的效率。 在这个工程中,所使用的硬件为STM32F103C8T6微控制器,这是STMicroelectronics生产的一款基于ARM Cortex-M3内核的高性能微控制器。该控制器的一个重要特点是有多个支持SPI通信的引脚,其中SPI2在本工程中被采用。STM32F103C8T6的高性能与低功耗特性使其成为许多嵌入式系统应用的理想选择。 此工程并未采用AD7124的同步模式,同步模式指的是多个设备通过同一个时钟信号同步工作。不使用同步模式意味着在通信时对设备的时序要求较高,但同时也能减少因同步问题导致的信号失真和数据传输错误。 由于AD7124的多通道读取功能,本工程的文件名称为ad7124_MultiChannel,表明其能够处理多个通道的信号,并且能够同时读取每个通道的数据。这对于需要处理多路信号的工业应用非常重要,如在医疗设备、工业控制和精密测量等场合。 这项改进工程不仅提升了AD7124的工作性能,还优化了整个系统的数据处理流程。对于需要高质量模拟前端信号处理的应用场景,这种优化能够显著提高系统的精确度和可靠性。同时,采用的Keil MDK5作为开发环境,其强大的调试工具和优化能力也为该工程的成功提供了有力的支持。 总结而言,驱动程序的改进涉及到了硬件性能的提升、信号处理精度的增强和软件架构的优化。这些改进不仅使系统更加高效,也确保了在各种应用场景中能稳定可靠地使用。工程师通过软件的调整和优化,充分发挥了硬件的潜力,提升了整个系统的性能,对于工程师和用户来说都是一个值得高兴的改进。
2025-04-30 15:47:44 3MB AD7124 硬件SPI STM32
1
使用文件系统可以读取SPI FLASH,整合开源软件EASY FLASH ,FLASHDB 统一到一个应用工程下面,完美实现文件存储,BOOT升级,数据记录,日志记录等相关功能,目前实现的是一个最小系统,文件读写按照12K BYTE进行测试验证,完全通过测试。
2025-04-23 19:38:05 20.75MB FLASHDB EASYFLASH
1
在嵌入式系统开发领域,STM32F407微控制器是一个广泛使用的高性能32位ARM Cortex-M4芯片,它在工业控制、通信设备、医疗仪器等多个领域都有应用。SD卡作为一种存储介质,由于其体积小、容量大、通用性强等特点,被广泛应用于各种嵌入式系统中作为数据存储解决方案。为了在STM32F407上实现与SD卡的交互,通常需要使用硬件SPI(串行外设接口)进行通信,因为这种通信方式速度快,且硬件支持丰富。 在本案例中,我们将详细介绍如何使用STM32F407的标准库函数和硬件SPI接口来实现对SD卡的读写操作。需要对硬件SPI接口进行初始化配置,这包括设置SPI的工作模式、数据传输速率、时钟极性和相位等参数。接着,需要初始化SD卡,这通常涉及到发送一系列SD卡指令,如初始化命令、设置块大小命令等,来让SD卡进入可以进行数据交换的状态。 在完成了初始化之后,就可以进行SD卡的数据读写操作了。写入操作通常分为几个步骤:首先是选择SD卡,并发送写入命令,然后等待SD卡的忙状态结束,最后发送数据块。读取操作相对简单,通常是选择SD卡,发送读取命令,然后读取返回的数据块。 在整个过程中,开发者需要注意的几个关键点包括:确保数据传输的稳定性,处理好SPI通信的时序问题,以及正确处理SD卡的响应信息。例如,写入操作完成后,需要检查SD卡返回的状态码以确认写入是否成功。同样,在读取操作中,也需要根据SD卡的响应来判断数据是否被正确读取。 在整个程序的编写过程中,标准库提供的函数可以大大简化开发流程。开发者可以利用库函数来配置硬件,初始化外设,以及处理数据传输等。利用这些函数,不仅可以降低编程难度,还可以提高开发效率,使得开发者可以更加专注于业务逻辑的实现。 在开发STM32F407与SD卡交互的程序时,还需注意错误处理和异常情况的处理。例如,在SD卡初始化失败或者在数据传输过程中发生错误时,程序应该能够检测到这些情况,并给出相应的错误处理措施,如重试、提示用户或者记录错误日志等。 为了确保程序的稳定性和可靠性,通常还需要进行充分的测试。测试应该覆盖各种边界条件和异常情况,以确保程序在不同的工作环境和不同的SD卡品牌下均能稳定运行。 使用STM32F407的标准库和硬件SPI接口来读写SD卡,涉及到硬件初始化、SD卡初始化、数据传输、错误处理等多个方面。开发者需要综合运用硬件知识、通信协议和编程技巧,编写出既稳定又高效的程序代码。本案例为嵌入式系统开发者提供了一套实用的解决方案,有助于他们快速实现SD卡在STM32F407平台上的读写功能。
2025-04-20 22:47:12 9.91MB STM32F407 SPI
1
SPI(Serial Peripheral Interface)是一种常见的串行通信接口,常用于微控制器与外部设备之间的通信,如传感器、存储器等。MS5614T是一款高度集成的数字压力和温度传感器,广泛应用于气象、航空以及消费电子等领域。在本项目中,我们将通过SPI接口对MS5614T进行控制,并实现实际测试,确保其性能稳定且线性良好。 MS5614T传感器主要特点包括高精度、低功耗和快速响应。它集成了一个压阻式压力传感器和一个高性能的24位ΔΣADC(模拟数字转换器),能够提供精确的压力和温度测量数据。该传感器支持多种工作模式,如连续转换模式和单次转换模式,可以根据具体应用的需求进行配置。 SPI通信协议由四个基本信号线组成:SCLK(时钟)、MISO(主设备输入,从设备输出)、MOSI(主设备输出,从设备输入)和CS(片选)。在与MS5614T进行SPI通信时,微控制器需按照SPI协议设置这些信号线,通过CS选择MS5614T,然后在SCLK的上升沿或下降沿进行数据交换。MOSI用来发送命令或配置字节,而MISO则用于接收传感器返回的数据。 在实际测试过程中,我们首先需要初始化SPI接口,设置合适的时钟速度和数据极性、数据边缘等参数。然后,通过向MS5614T发送特定的命令字节,可以读取压力和温度的原始数据。这些数据通常包含一个校验位,以确保数据传输的准确性。MS5614T的命令字节通常包括一个操作码,用于指示要执行的操作(如读取压力、读取温度或进行校准)以及一个地址字段,用于指定要访问的数据寄存器。 测试阶段,我们需要验证传感器在不同条件下的线性表现。线性性是指传感器输出与输入之间的关系是否保持近似直线,这直接影响到测量结果的准确性和可信赖性。可以通过改变输入参数(如压力或温度),并记录相应的输出值,然后绘制曲线图进行分析。如果曲线接近直线,说明MS5614T的线性特性良好。 此外,还需要关注传感器在长时间运行和不同环境条件下的稳定性。这可能涉及到温度漂移、电源电压波动等因素的影响。在项目应用中,应确保MS5614T能够在各种工作环境下提供稳定可靠的测量结果。 在TEST-MS5614压缩包文件中,可能包含了测试代码、数据记录、测试报告等相关文件,这些可以帮助我们更深入地理解SPI控制MS5614T的具体实现过程和测试结果。通过分析这些文件,我们可以学习如何正确配置SPI接口,以及如何解析和处理MS5614T返回的数据,从而更好地运用这种传感器在实际项目中。
2025-04-20 15:31:04 6.08MB
1
SPI串行配置加载FPGA代码是嵌入式系统中常用的一种技术,特别是在使用如HI3531DV200这样的高性能芯片时。HI3531DV200是一款集成了ARM Cortex-A7 CPU的SoC,常用于视频处理和物联网应用。它具有SPI接口,可以与外部FPGA(Field Programmable Gate Array)通信,实现FPGA的配置和控制。本文将深入探讨SPI串行配置加载FPGA代码的过程,以及在HI3531DV200上的驱动实现。 1. SPI接口介绍: SPI(Serial Peripheral Interface)是一种同步串行通信协议,由主机(Master)控制,可以连接一个或多个从机(Slave)。在FPGA配置中,HI3531DV200作为主机,通过SPI接口向FPGA发送配置数据。 2. FPGA配置流程: - 初始化:主机需要初始化SPI接口,设置合适的时钟频率、数据位宽、极性和相位等参数。 - 发送配置命令:然后,主机发送特定的配置命令给FPGA,告知FPGA即将接收配置数据。 - 数据传输:接着,主机按照约定的格式通过SPI接口向FPGA传输配置数据流,这些数据通常包含逻辑门电路的配置信息。 - 结束信号:当所有配置数据传输完毕,主机发送结束信号,FPGA开始执行配置并进入工作模式。 3. HI3531DV200的SPI驱动开发: - 驱动注册:在Linux内核中,需要为SPI设备编写驱动程序,并在系统启动时注册。这包括设备树中的定义,以及驱动的probe函数,用于识别和初始化SPI设备。 - 数据传输函数:编写SPI传输函数,负责打包数据并调用SPI控制器的API来发送和接收数据。 - 错误处理:添加适当的错误检测和处理机制,确保在数据传输过程中遇到问题时能够恢复或报告错误。 4. FPGA配置文件生成: FPGA配置文件(.bit或.bin)由硬件描述语言(如VHDL或Verilog)编译而来,通过专用工具(如Xilinx的 Vivado或Intel的Quartus)生成。这个文件包含了FPGA内部逻辑的配置信息,用于构建用户定义的逻辑功能。 5. 加载FPGA代码到HI3531DV200: - 准备配置文件:将生成的FPGA配置文件转换为适合SPI传输的格式,例如二进制格式。 - 调用SPI驱动:通过Linux用户空间应用程序或内核模块,调用SPI驱动的API进行配置数据的发送。 - 监控状态:在发送配置数据的过程中,监控FPGA的状态,确保数据正确无误地被接收。 6. 实际应用: 这种SPI配置方式在嵌入式系统中很常见,因为它简化了硬件设计,减少了对外部存储器的需求。例如,在HI3531DV200上,可以利用FPGA进行快速的数据预处理或加速特定算法,同时利用CPU处理复杂的操作系统和应用层任务。 SPI串行配置加载FPGA代码在HI3531DV200驱动方式下,涉及到SPI接口的配置、驱动程序开发、FPGA配置文件的生成与加载等多个环节,这些都需要开发者对嵌入式系统、Linux驱动、FPGA原理和编程有深入理解。在实际操作中,需结合具体的硬件平台和软件环境进行细致的调试和优化。
2025-04-19 08:29:27 18KB fpga开发 linux spi
1
PS2 由手柄与接收器两部分组成,手柄主要负责发送按键信息。接通电源并打开手柄开关时,手柄与接收器自动配对连接,在未配对成功的状态下,接收器绿灯闪烁,手柄上的灯也会闪烁,配对成功后,接收器上绿灯常亮,手柄上灯也常亮,这时可以按“MODE”键,选择手柄发送模式。 红灯模式:遥杆输出模拟值; 绿灯模式:遥杆对应上面四个按键,只有四个极限方向对应。接收器和主机(单片机)相连,实现主机与手柄之间的通讯。当主机想读手柄数据时,将会拉低 CS 线电平,并发出一个命令“0x01”;手柄会回复它的 ID“0x41=模拟绿灯,0x73=模拟红灯”;在手柄发送 ID 的同时,主机将传送 0x42,请求数据;随后手柄发送出 0x5A,告诉主机“数据来了”。数据格式及意义如图 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/m0_62524451/artic
2025-04-19 00:02:47 10.76MB stm32
1
内容概要:本文详细介绍了基于Vivado平台搭建的AD9680 FPGA工程项目,涵盖JESD204B接口、SPI配置、时钟树配置以及跨时钟域处理等多个方面。项目采用Verilog语言编写,包含详细的注释和调试经验分享。文中重点讨论了SPI配置引擎、JESD204B链路对齐、时钟管理模块(如MMCM)配置、跨时钟域处理等问题,并提供了多个实用技巧和注意事项。此外,还涉及了温度监控模块的实现,确保系统的稳定性和可靠性。 适合人群:具备一定FPGA开发经验和Verilog编程基础的研发人员,尤其是从事高速数据采集和通信领域的工程师。 使用场景及目标:适用于需要理解和实现AD9680高速数据采集系统的开发者。主要目标是帮助读者掌握JESD204B接口配置、SPI寄存器配置、时钟树设计等关键技术,从而能够成功构建并调试类似的FPGA工程。 其他说明:文中不仅提供了完整的代码片段,还包括了许多宝贵的调试经验和实战心得,对于提高实际开发效率非常有帮助。建议读者结合具体应用场景深入研究相关代码和技术细节。
2025-04-17 11:17:33 2.25MB
1
SPI(Serial Peripheral Interface)是一种广泛应用于微控制器与外部设备间通信的串行接口,它具有简单、高效的特点。在这个GD原厂DEMO中,我们将会深入探讨SPI的调试方法、基本概念以及实际波形分析。 SPI的基础知识主要包括以下几个核心部分: 1. **工作模式**:SPI有四种工作模式,即主模式(Master)和从模式(Slave),以及极性(CPOL)和相位(CPHA)的组合。CPOL决定了时钟线在空闲状态时的电平,而CPHA则定义了数据是在时钟上升沿还是下降沿采样。 2. **引脚定义**:SPI接口通常包括MISO(主设备输入,从设备输出)、MOSI(主设备输出,从设备输入)、SCK(时钟)和SS(片选)四个基本引脚。在多从机系统中,每个从设备都有一个独立的SS引脚用于选择。 3. **数据传输**:SPI的数据传输是单向的,即MOSI和MISO分别用于主设备到从设备和从设备到主设备的数据传输。数据通常以字节为单位进行交换,最右边的位(LSB或MSB)先发送取决于配置。 4. **同步时钟**:由主设备提供,确保主从设备间的通信同步。时钟频率由主设备决定,可以根据需求进行调整。 接下来,我们将重点关注SPI的调试方法: 1. **硬件验证**:检查连接是否正确,确保所有引脚的连接无误,尤其是SS和时钟线,因为它们直接影响通信的成功与否。 2. **软件调试**:在C语言中,可以使用SPI相关的库函数来设置SPI接口的工作模式、波特率等参数,并进行数据发送和接收。GD32E50x系列芯片的固件库(如GD32E50x_Firmware_Library_v1.3.0)提供了丰富的API函数供开发者调用。 3. **示波器观察**:通过示波器查看SPI接口的实际波形,可以帮助我们了解数据传输的实时状态,如时钟信号的稳定性和数据采样的正确性。 4. **错误排查**:如果通信出现问题,应检查SPI配置、时钟同步、数据传输顺序等。例如,可能需要调整CPOL和CPHA设置以匹配从设备的要求,或者检查是否正确设置了片选信号。 理解SPI的实际波形有助于我们更好地理解和优化通信过程。在波形图中,我们可以看到SCK时钟的上升沿和下降沿,以及MISO和MOSI上的数据变化。通过对这些波形的分析,我们可以判断数据传输是否正确,是否存在丢包、噪声或时序问题。 SPI调试涉及硬件连接、软件配置、波形分析等多个方面。GD原厂DEMO提供的资源,如GD32E50x_Firmware_Library_v1.3.0,是学习和实践SPI通信的良好起点,它包含了实现SPI功能所需的库函数和示例代码,帮助开发者快速上手并解决实际问题。
2025-04-11 18:02:20 17.45MB
1
通过FPGA 完成对ADT7301art芯片的控制,读取温度数据。包括了 ADT7301art芯片的数据手册,以及ADT7301art 的verilog驱动和测试激励tb文件 FPGA +ADT7301芯片 Verilog驱动+SPI 控制 + ADT7301art 温度传感器,具体的代码说明请在基于FPGA的ADI7301art 温度传感器的控制 II(FPGA驱动代码)https://blog.csdn.net/qq_34895681/article/details/121422981?spm=1001.2014.3001.5502中查看
2025-04-10 11:11:07 260KB fpga开发 编程语言
1