wiresharkXG讯飞连接插件项目_实现UnrealEngine5与科大讯飞平台深度集成的多功能接口工具_包含星火大模型自动语音识别语音合成人脸识别文字识别图像识别等核心功能_支持全球与中国区双.zip
2025-09-15 09:39:10 18.49MB python
1
基于python代码的医学图像识别(二分类)
2025-09-13 16:13:31 183KB python
1
Tesseract-OCR是一款功能强大的开源文字识别引擎,它能够支持多种语言的文本识别。在处理中文文档时,尤其需要使用专门的中文语言包以提高识别的准确率。最新中文语言包是指为Tesseract-OCR引擎提供的最新的针对中文文字的训练数据文件,文件名为chi-sim.traineddata。这个文件是经过专门训练的,包含了大量中文字符的形状、结构和上下文信息,使得Tesseract在处理中文时能够更加精准地解析和识别文字。 解压即可使用是该语言包的一个特点,这意味着用户无需进行复杂的安装或配置步骤,只需下载并解压相应的chi-sim.traineddata文件到tesseract的tessdata目录下,即可使Tesseract-OCR引擎支持中文识别功能。这种方式极大地简化了中文环境下的使用流程,使其更加亲民和易于上手。 Tesseract-OCR不仅仅支持中文和英文,它还能够识别超过100种语言的文字。正因为此,Tesseract在图像识别、文档数字化、自动化数据录入等多个领域都有广泛的应用。作为开源项目,Tesseract-OCR得到了全球开发者社区的持续支持和改进,其准确性和适用性不断提升。 对于图像识别、语言包和机器学习这三个标签,它们与Tesseract-OCR及中文语言包紧密相关。图像识别指的是Tesseract-OCR的核心功能,即从图片中识别出文字。语言包则是指为了让Tesseract能够识别特定语言文字,而提供的专门训练数据集。机器学习则是Tesseract-OCR背后的技术基础,通过机器学习模型,Tesseract能够学习并提高对不同文字的识别准确率。Tesseract-OCR利用了先进的机器学习算法来训练模型,从而使得其识别能力不断增强。 在压缩包文件中,tessdata是Tesseract-OCR引擎存放训练数据文件的默认目录。当用户下载并解压chi-sim.traineddata到此目录后,Tesseract-OCR便能够识别中文字符。这一过程是自动化的,进一步降低了用户的操作难度。 从应用角度来看,Tesseract-OCR及其中文语言包的使用场景十分广泛。例如,在图书馆、档案馆等文化机构,可应用于历史文献、古籍的数字化工作中,将纸质文档中的文字转化为电子文本,便于保存、检索和分享。在商业领域,它可用于自动识别发票、合同及其他商业文件中的关键信息,以实现高效的数据录入。在公共安全领域,Tesseract-OCR可以辅助执法部门快速提取和分析证据中的文字信息。在移动应用和在线服务中,Tesseract-OCR也为那些需要文字识别功能的应用提供了支持,提升了用户体验。 Tesseract-OCR最新中文语言包的推出,不仅丰富了Tesseract-OCR引擎的语言支持能力,也为其在中文文字识别方面提供了强大的技术保障。它简化了用户的使用流程,并且拓展了Tesseract-OCR的应用场景,使其在图像识别、自动化数据录入和机器学习等方面的应用更加得心应手。通过不断更新的语言包,Tesseract-OCR能够持续进步,满足不同领域对文字识别技术的需求。
2025-09-08 16:30:36 33.09MB 图像识别 机器学习
1
内容概要:本文档主要介绍了智慧社区省赛的相关培训资料,涵盖ROS技术的程序题、操作题和综合题,以及涉及视觉技术的任务如图像分类、交通信号灯状态识别、窗户检测、火灾隐患检测等。每部分任务都有详细的实现步骤、评分标准和参考答案。还包括基础知识考试的内容和省赛文件提交的要求。 适合人群:对ROS技术和计算机视觉有一定了解的学生和工程师,尤其是参加智慧社区相关竞赛的团队成员。 使用场景及目标:适用于准备智慧社区省赛的技术培训和个人自学,帮助参赛团队提升技术水平,提高比赛得分。 其他说明:文档提供了大量的实践案例和代码示例,有助于理解和掌握ROS和视觉技术的实际应用。同时,对基础知识的复习也有助于巩固理论基础。
2025-09-08 01:10:12 5.42MB Python 图像识别 深度学习
1
建议先看说明:https://blog.csdn.net/qq_33789001/article/details/149879196 在增强现实(AR)技术快速发展的今天,Rokid AR眼镜作为国内新兴的AR设备,为开发者提供了强大的空间计算能力和沉浸式交互体验。本实现聚焦于AR技术的核心功能之一——图像识别与跟踪,通过Unity引擎和C#编程,展示了如何在Rokid AR平台上构建精准的视觉识别系统。 图像识别与跟踪技术是AR应用的基石,它使虚拟内容能够与现实世界中的特定标记或图像建立稳定的空间关系。本文将介绍最基础的功能--图像识别与跟踪的完整实现过程。 核心实现原理 系统基于Rokid SDK的事件驱动架构: 图像检测事件:OnTrackedImageAdded响应新图像的识别 实时跟踪事件:OnTrackedImageUpdate处理图像位置/旋转变化 消失处理事件:OnTrackedImageRemoved清理虚拟对象 实现动态的识别后的相应处理。 本工程以插件V3.0.3为例,硬件要求如下: 1)可进行Unity开发的PC设备:支持用于Unity开发的Mac或Windows PC设备。 2)空间计算设备:配备Rokid Station Pro/Rokid Station2设备。 3)眼镜设备:配备Rokid Max Pro/Rokid Max/Rokid Max2眼镜。 软件要求: 1)Unity开发环境:使用Unity 2022 LTS版本。 2)Android Build Support环境:Android SDK、NDK Tools、OpenJDK。 3)移动平台支持:Android Platform号码应为28至34。 4)操作系统要求:YodaOS系统(眼镜系统)版本不低于v3.30.003-20250120-800201。
2025-09-02 10:02:18 20.92MB Unity源码 图像识别跟踪
1
创建该数据集的目的是促进卷积神经网络和计算机视觉的研究。 由于当前与冠状病毒大流行相关的背景,人类必须适应新的现实。口罩的使用在世界各国已成为普遍现象。 内容 该数据集有 3829 张图像,分为两个不同的类别: - 带有口罩 - 不带有口罩 该数据集的目的是促进图像分类模型的实现。 在当前全球抗击冠状病毒大流行的背景下,口罩已成为人们日常生活中的必备品。为了适应这一新的现实,推动计算机视觉和卷积神经网络技术的发展,特别创建了一个关于口罩检测的数据集。该数据集包含3829张图像,这些图像被明确划分为两类:一类是人们佩戴口罩的情况,另一类则是人们未佩戴口罩的情况。 数据集的构建是计算机视觉研究中的一项基础工作,它为图像分类模型的训练提供了必要的素材。在当前的公共卫生背景下,这个特定的数据集不仅有助于检测人群中的口罩佩戴情况,而且还能服务于智能监控系统,提高公共安全水平。 对于卷积神经网络(CNN)的研究人员来说,这样的数据集是一个宝贵的资源。CNN是一种深度学习算法,特别适用于图像处理领域,它能够从图像中识别出复杂的模式。在本数据集中,CNN可以被训练来区分和识别出佩戴口罩和未佩戴口罩两种不同的状态。通过这种训练,模型能够学会如何识别不同的面部特征,并且能够在现实世界的应用中快速准确地做出判断。 图像识别技术的进步,尤其是在面部识别领域的应用,已经在多个领域显示出其潜力,例如在安全检查、个性化推荐系统、增强现实等场合。本次创建的数据集在推动口罩检测研究的同时,也将对这些领域的技术进步产生积极影响。 此外,这个数据集还可能被用于监测特定环境中的口罩佩戴规则的遵守情况,如在公共交通工具、商场、学校等公共场所,相关软件可以通过分析监控摄像头实时捕获的画面,快速准确地识别出哪些人遵守了佩戴口罩的规定,哪些人没有,从而帮助管理人员更好地执行公共卫生规定。 为了进一步提高图像识别技术的准确性和实用性,研究人员会利用各种技术手段对数据集中的图像进行增强和预处理。例如,通过旋转、缩放、裁剪等手段扩充数据集的多样性;采用图像增强技术改善图像质量,降低环境因素对识别结果的干扰;采用数据标注技术明确图像中的关键信息,如人的面部位置等。所有这些努力都是为了提高模型的泛化能力和识别准确性。 这个关于口罩检测的数据集不仅对当前的疫情监测具有现实意义,而且在推动计算机视觉技术发展方面也具有重要的研究价值。通过对这个数据集的深入研究,可以期待未来出现更加智能和高效的图像识别系统,为社会带来更多的便利和安全保障。
2025-08-26 20:08:26 126.69MB 数据集 图像识别
1
在当前人工智能领域中,图像识别技术作为深度学习的重要分支,已被广泛应用于各种场景中。尤其是在游戏、安防监控、自动驾驶等领域,图像识别的准确性与效率直接影响到整个系统的性能。而Yolo(You Only Look Once)作为其中的一种高效目标检测算法,因其速度快、准确率高等特点,成为了许多开发者和研究者训练模型的首选。 本次提供的数据集名为“穿越火线角色标注数据集”,总共有1500张标注好的图片。"穿越火线"作为一款广受欢迎的在线射击游戏,其角色丰富,场景多样,为图像识别提供了极佳的素材。这些图片被专门标注用于训练Yolo算法模型,以提高其在复杂背景下的目标检测能力。 数据集导出为两种格式:voc格式与txt格式。VOC(Visual Object Classes)格式是一种广泛使用的标注格式,它不仅可以保存图片信息,还包括了图片中每个目标的边界框信息和类别信息。这种格式的文件能够被多种图像处理工具和深度学习框架所支持,非常适合于数据预处理和模型训练。而txt格式则是一种纯文本格式,记录了与voc格式相同的信息,但更易于编辑和处理,适用于需要对标注数据进行快速查看或简单修改的场景。 文件名称列表中的README文件,通常包含数据集的介绍、使用说明、格式定义以及版权信息等重要信息,对于使用者而言,它是理解数据集结构与内容的起点。data.yaml文件则可能包含了数据集的配置信息,如类别列表、图片文件路径等,便于在训练模型时读取和使用。而train文件夹,则是存放所有训练图片及其标注信息的地方,保证了数据集的清晰组织,方便快速访问和处理。 整个数据集不仅为图像识别研究提供了丰富的素材,同时也为那些希望使用Yolo算法进行角色检测训练的开发者和研究者提供了极大的便利。通过对这些数据的深入学习和反复训练,开发者能够不断优化模型的准确度,进而应用于实际的图像识别项目中。 无论是在游戏场景下对角色进行准确识别,还是在复杂的现实世界中进行目标检测,该数据集都具有极高的实用价值和研究价值。它不仅能够帮助开发者和研究者探索更多可能的应用场景,同时也推动了人工智能领域尤其是图像识别技术的进一步发展。
2025-08-23 08:00:41 89.89MB 数据集yolo
1
人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python源码.zip人工智能的图像识别系统python
2025-08-15 12:40:33 16.72MB 人工智能 python
1
随着科技的不断进步,深度学习技术在图像识别领域的应用愈发广泛,其中水果图像识别作为一个重要研究方向,受到了学界和产业界的高度重视。基于深度学习的水果图像识别算法的提出和研究,旨在通过先进的技术手段提高识别的准确性和效率,这对于智慧农业的精准管理以及数字医疗中营养成分的分析都具有重要的现实意义。 水果图像识别的核心在于如何借助算法准确判断出图像中的水果种类。在智慧农业的场景中,这项技术可以帮助农户快速准确地识别果树的种类,进而实现果园管理的自动化,提高水果采摘的效率和精度。而在数字医疗领域,通过识别水果图像,能够为病人提供科学的营养建议,使膳食计划更加个性化和合理。 深度学习技术,尤其是卷积神经网络(CNN)和递归神经网络(RNN),在处理图像识别任务上显示出了显著的优势。由于其能够自动提取图像特征,并通过多层神经网络结构来模拟人脑的认知功能,深度学习在水果图像识别中表现出了远超传统机器学习算法的能力。 本论文着重探讨了基于深度学习的水果图像识别算法的研究。在算法选择上,我们选择了卷积神经网络(CNN)和递归神经网络(RNN)这两种深度学习算法作为主要的研究模型。CNN擅长处理图像数据,能够从图像中提取空间层次的特征;而RNN则在处理序列数据时表现出色,能够处理与时间相关的数据。 为了训练和测试这些深度学习模型,我们构建了一个包含多种水果图像的数据集。该数据集中的图像涵盖了不同种类的水果,它们分别在不同的光照、角度和背景条件下拍摄,以确保模型在尽可能多的场景下都能保持良好的识别效果。通过对数据集进行预处理、归一化以及增强等操作,我们为模型提供了充分且多样的学习材料。 模型训练和测试是验证算法有效性的关键步骤。本文使用所建立的数据集对CNN和RNN模型进行训练,并通过测试集来评估模型的性能。实验结果表明,基于深度学习的水果图像识别算法能够达到较高的准确率,验证了算法的有效性,并且模型对于未知图像也展示出良好的泛化能力。 实验结果的可靠性和模型的泛化能力是水果图像识别研究中的重要考量。本论文还深入讨论了实验设计、模型选择和数据集构建等因素对结果的影响。在此基础上,论文对未来水果图像识别技术的发展趋势进行了展望,提出了进一步研究的方向,例如如何增强模型在复杂环境下的识别能力,如何减少模型训练所需的时间和资源,以及如何将模型应用到移动端,实现更加便捷的识别服务。 最终,本文得出结论,基于深度学习的水果图像识别算法不仅提高了识别的准确性,还提升了识别的速度,为智慧农业和数字医疗领域的发展提供了有力的技术支持。这不仅是一个技术上的突破,更是对深度学习在实际应用领域一次重要的探索和实践,为后续研究奠定了坚实的基础。
2025-08-13 14:56:16 3.36MB 毕业设计 毕业论文 毕业答辩
1
本文档是关于C#语言实现的图片抠像项目,特别是利用RVM(Region-based Video Matting)算法,一个无绿幕的图片抠像技术,该项目包含了一个完整的运行模型,用户可以通过源码进行学习和运行。 从文件名来看,该压缩包包含了多个C#项目文件,主要的文件类型有: - .cs:这是C#程序的主要源代码文件,包括用户界面代码、业务逻辑处理代码等。 - .Designer.cs:这是自动生成的文件,用于存放Windows窗体设计信息。它与对应的窗体(如Form1)一起工作,用于管理界面元素的布局和属性。 - .config:这个文件配置应用程序的设置,比如连接字符串、应用程序设置等。 - .csproj:这是C#项目的配置文件,记录了项目的结构、依赖和构建规则。 - .resx:资源文件,用于存储非代码资源,如字符串、图像和用户界面布局。 - obj和bin文件夹:分别用于存放编译过程中的中间文件和最终的编译输出文件。 具体到每个文件的作用: - App.config:配置应用程序级别的信息,如数据库连接字符串和全局变量。 - Form1.cs和Form1.Designer.cs:这两个文件共同构成了用户界面的代码部分。Form1.cs包含实际处理UI逻辑的代码,而Form1.Designer.cs则负责界面的布局和控件属性的自动化生成与管理。 - LockBitmap.cs:这个文件可能包含有关处理图像的位图锁定和操作的代码,这在图片抠像过程中可能是必要的,因为需要访问和修改图像数据。 - Program.cs:这是C#程序的入口点,包含了Main方法,负责程序的启动和流程控制。 - 抠像-RVM.csproj:这个文件包含了项目的构建信息,指定了需要编译的文件和依赖关系等。 - Form1.resx:这个资源文件包含了Form1窗体使用的本地化资源,如字符串和图片等。 - obj、bin文件夹:存放编译生成的中间文件和可执行文件等。 在使用该源码时,用户需要注意的是,RVM算法是一种比较先进和复杂的图像处理技术,它通过分析视频中的区域背景,实现精确的图像抠取。而该项目提供了一个完整的实现,包括了相关的算法处理和用户界面,使得无需绿幕即可实现图片抠像。这对于需要进行图像处理但又不想从零开始搭建算法模型的开发者来说,是非常有价值的。 另外,由于文档提到项目是"完整可运行"的,这意味着用户下载后只需要编译并运行,便能看到实际的效果,并可以通过源码进行学习和修改。这对于学习和研究图像识别技术,特别是RVM算法的开发者来说,是一个很好的实践平台。 根据上述分析,该项目适合的用户群体包括: 1. 刚接触图像处理和C#编程的初学者。 2. 想要实现复杂图像抠像功能的开发人员。 3. 对RVM算法有兴趣的研究人员和学生。 该项目以其完整性、可运行性和包含的高级图像处理技术,成为了一个宝贵的资源,对于广大图像处理爱好者和专业人士来说,都是一个值得深入探究的案例。
2025-07-23 09:21:11 150.77MB 图像识别
1