自动驾驶多传感器联合标定系列:激光雷达到相机图像坐标系标定工程详解,含镂空心检测及多帧数据约束的外参标定方法,附代码注释实战经验总结,自动驾驶多传感器联合标定系列之激光雷达到相机图像坐标系的标定工程 , 本提供两个工程:基于雷达点云的镂空标定板镂空心的检测工程、基于镂空标定板的激光雷达到相机图像坐标系的标定工程。 其中镂空心的检测是进行lidar2camera标定的前提。 lidar2camera标定工程中带有多帧数据约束并基于Ceres非线性优化外参标定的结果。 这两个工程带有代码注释,帮助您对标定算法的的理解和学习。 实实在在的工作经验总结 ,核心关键词: 1. 自动驾驶 2. 多传感器联合标定 3. 激光雷达到相机图像坐标系标定 4. 镂空标定板 5. 心检测 6. lidar2camera标定 7. 多帧数据约束 8. Ceres非线性优化 9. 外参标定 10. 代码注释 用分号分隔的关键词结果为: 自动驾驶;多传感器联合标定;激光雷达到相机图像坐标系标定;镂空标定板;心检测;lidar2camera标定;多帧数据约束;Ceres非线性优化;外参标定;代
2026-01-24 22:50:07 215KB
1
VB成绩统计饼图,生成形图表,饼百分比图表的例子,这种图表相信大家见多了,这个例子介绍了VB简单生成饼图的方法,对初学VB的朋友会有帮助,通过这个图表,你可以了解绘图、填充、按比例分配、绘制扇形等是如何实现的,用它来显示优秀人数、良好人数、及格人数、不及格人数所占的比例,各个比例用不同的颜色填充,让结果一清二楚,源代码运行于VB6.0环境 ,运行效果如下图所示。
2026-01-12 14:20:56 3KB VB源码-报表实例
1
如何使用COMSOL与MATLAB接口创建二维和三维随机分布球/模型,用于多孔介质的模拟。二维模型主要关注生成固定数目或随机孔隙率的互不相交小球,而三维模型则进一步扩展到生成固定数量或特定孔隙率的小球模型,小球半径服从正态分布。文中探讨了相关代码的具体实现方法及其应用背景,强调了代码的优化和与COMSOL环境的无缝集成,以便于科研人员进行高效的仿真和数据分析。 适用人群:从事多孔介质研究的科研人员、工程师及相关领域的研究生。 使用场景及目标:适用于需要模拟流体在多孔介质中流动行为的研究项目,旨在提供一种有效的建模工具和技术支持,帮助研究人员更好地理解和预测多孔介质内部的物理现象。 其他说明:文中提供的代码片段和模型构建思路对初学者友好,有助于快速上手并深入理解多孔介质模拟的基本原理和技术细节。同时,代码的灵活性使其可以根据具体需求进行定制化调整。
2026-01-05 11:11:24 247KB
1
Smith图工具是电子工程领域的一项创新工具,特别是对于处理射频(RF)和微波电路设计的工程师来说,它的重要性不言而喻。这种工具利用Smith图的图形化优势,使工程师们能够更加直观和有效地进行复杂的阻抗匹配工作。它不仅能够帮助工程师快速准确地完成阻抗匹配,而且在分析电路性能方面也具有独特的价值。 Smith图的工作原理涉及复数阻抗平面的使用。在这个平面中,X轴代表阻抗的实部,Y轴代表阻抗的虚部。通过Smith图,我们可以直观地看到任何复数阻抗,并通过特定的轨迹——Smith曲线来表示。这些曲线实际上就是阻抗的归一化表现形式,它们帮助设计者在图上进行直观的计算和分析。 工程师使用Smith图工具进行设计时,首先需要输入或测量出负载阻抗的复数值,并将其标记在图上。然后,他们会通过移动或旋转Smith曲线来寻找最佳匹配位置,也就是使负载阻抗与源阻抗相匹配的点,进而实现最大化的功率传输。 除此之外,Smith图工具的使用步骤还包括确定所需的网络参数,例如电感或电容值。这通常通过观察曲线上的特定点或者利用软件提供的自动计算功能来完成。得到这些参数之后,工程师就可以将其应用到实际电路中,确保电路的性能达到预期标准。 Smith图工具不仅仅局限于阻抗匹配这一功能。它还能够帮助工程师分析电路的频率响应,计算反射系数和电压驻波比(VSWR)等关键指标。这些功能对于优化电路设计和提高信号传输效率至关重要。 对于工程师来说,尤其是那些刚刚接触射频领域的初学者而言,学会如何正确读取和解释Smith图是十分必要的。这一点有助于他们更深入地理解和解决复杂的射频问题,同时也能够快速掌握电路设计的要点。 当前提供的Smith图工具小软件为免费版本,这意味着广大工程师和学者可以在没有任何成本负担的情况下利用这一工具,进行实验和学习。该软件通常会附带一个简洁直观的用户界面,即便是初次使用的用户也能够迅速上手并使用软件完成复杂的计算任务。而软件附带的Readme.txt文件则为用户提供了详细的安装指南、使用教程、注意事项以及更新信息,确保用户能够充分利用软件的各项功能。 Smith图工具小软件(免费)无疑是对电子工程领域的一项重要贡献。它不仅简化了复数阻抗计算和匹配过程,也极大提升了工程师在电路设计方面的效率和精确度。无论是在学术研究还是工业应用中,Smith图工具都扮演着一个不可替代的角色,掌握它的使用将是电子工程师提升自身专业技能的一个重要手段。随着电子工程领域的不断进步,我们有理由相信,Smith图工具将会继续发展,为工程师们带来更多便利和创新。
2025-12-31 11:26:14 506KB smith
1
基于李特文《齿轮几何学与啮合理论》的齿轮技术matlab程序实现与传动特性解析,齿轮、行星齿轮、端面齿轮、斜齿轮、非齿轮、弧齿轮……啮合理论、啮合原理、齿面求解、传动特性、接触分析tca、传动误差等技术matlab程序实现。 参照李特文《齿轮几何学与啮合理论》 ,核心关键词:齿轮; 行星齿轮; 端面齿轮; 斜齿轮; 非齿轮; 弧齿轮; 啮合理论; 啮合原理; 齿面求解; 传动特性; 接触分析TCA; 传动误差; 技术; MATLAB程序实现; 李特文《齿轮几何学与啮合理论》。,基于齿轮技术的啮合原理与传动特性Matlab实现研究
2025-11-24 18:04:02 665KB 柔性数组
1
COMSOL模拟手性超材料模型:分析左右旋偏振下的吸收、反射与透射率(参数调整与文献趋势一致),COMSOL模拟手性超材料模型:探究偏振光下的吸收、反射、透射特性(与文献参数比对,趋势相符),COMSOL手性超材料文献模拟模型 计算左右旋偏振下的吸收、反射、透射率(材料参数未与文献一致 趋势吻合) ,关键词:COMSOL手性超材料;文献模拟模型;左右旋偏振;吸收;反射;透射率;趋势吻合。,COMSOL模拟手性超材料:偏振光下的光学性能分析(参数趋势吻合) 在材料科学与光学领域中,手性超材料作为一类特殊的材料,因其独特的电磁性能和在光波调控方面的应用潜力而备受关注。随着计算模拟技术的进步,COMSOL Multiphysics作为一种强大的数值分析软件,被广泛应用于手性超材料的模拟与研究中。通过模拟分析,研究人员能够深入了解手性超材料在左右旋偏振光下的吸收、反射与透射特性,并与现有文献中的实验数据进行比较。 在进行COMSOL模拟时,研究者首先需建立精确的计算模型,确保模型中的参数设置与实际手性超材料的物理属性相吻合。为了验证模拟结果的准确性,研究者会参考相关文献中的实验参数进行调整,并对模拟结果的趋势进行比对。通过这种方式,可以确保模拟数据与实验数据在宏观趋势上的一致性,提高模拟结果的可信度。 模拟分析中,手性超材料在偏振光下的光学性能是重点研究内容。具体来说,研究人员会对手性超材料的吸收率、反射率和透射率进行详细的计算与分析。在左右旋偏振的入射光作用下,手性超材料的电磁响应特性可能表现出明显的差异性,这与材料内部的旋光性质直接相关。通过深入研究,可以揭示手性超材料对不同偏振光的调控能力,为设计新型光学器件提供理论依据。 此外,模拟分析还需考虑手性超材料的结构设计与材料选择,不同的结构参数和材料组分会影响材料的光学特性。因此,在模拟过程中,参数的调整是实现与实验数据趋势吻合的关键步骤。通过不断优化模型参数,研究者能够更加准确地预测手性超材料的光学行为,并为实验设计提供指导。 值得注意的是,手性超材料的研究不仅仅局限于单一的性能分析。在实际应用中,手性超材料可能会与其他类型的材料或结构组合使用,形成复合材料系统。因此,模拟研究还需考虑这种复合材料系统中的协同效应,以及在不同环境条件下的性能稳定性。 COMSOL模拟手性超材料模型的研究,为深入理解手性超材料在偏振光下的光学性能提供了重要的手段。通过对比模拟与文献数据,不仅可以验证模型的准确性,还能为未来的设计和应用开辟新的途径。随着技术的不断发展,我们有理由相信,手性超材料将在光学、电磁波调控以及其他高科技领域发挥更加重要的作用。
2025-11-05 10:01:06 363KB kind
1
内容概要:本文介绍了使用COMSOL软件模拟手性超材料在左右旋偏振光照射下的吸收、反射和透射率。通过建立3D模型并设定材料参数,作者探讨了不同条件下手性超材料的光学特性。虽然材料参数与文献不完全一致,但模拟结果展示了相似的趋势,揭示了手性超材料的独特电磁响应和光学行为。文中详细描述了模型构建、仿真过程及结果分析,强调了多层材料间相互作用的重要性,并对未来研究方向提出了展望。 适合人群:从事光学材料研究的专业人士,尤其是对超材料及其电磁特性和光学特性感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解手性超材料光学特性的研究人员,旨在帮助他们掌握COMSOL模拟方法,以便更好地设计和优化超材料结构。 阅读建议:读者可以重点关注模型构建的具体步骤和参数选择依据,以及仿真过程中遇到的问题和解决方案。同时,结合实际实验数据对比模拟结果,进一步验证模型的有效性和可靠性。
2025-11-05 09:59:16 227KB
1
COMSOL中的多孔介质模拟:利用MATLAB代码随机分布的二维三维球模型生成算法打包及功能详解,利用COMSOL与MATLAB代码实现的随机分布球-模型:二维三维多孔介质模拟程序包,COMSOL with MATLAB代码随机分布球 模型及代码。 包含二维三维,打包。 用于模拟多孔介质 二维COMSOL with MATLAB 接口代码 多孔介质生成 以及 互不相交小球生成程序 说明:本模型可以生成固定数目的互不相交的随机小球;也可以生成随机孔隙模型 一、若要生成固定数目的小球,则在修改小球个数count的同时,将n改为1 二、若要生成随机孔隙模型,则将count尽量调大,保证能生成足够多的小球 三维COMSOL with MATLAB代码:随机分布小球模型 功能: 1、本模型可以生成固定小球数量以及固定孔隙率的随机分布独立小球模型 2、小球半径服从正态分布,需要给定半径均值和标准差。 2、若要生成固定小球数量模型,则更改countsph,并将孔隙率n改为1 3、若要生成固定孔隙率模型,则更改孔隙率n,并将countsph改为一个极大值1e6. ,核心关键词: COMS
2025-11-04 20:20:35 3.4MB 数据结构
1
本文介绍了一种新型的双频极化微带接收天线(rectenna),用于2.45 GHz和5.8 GHz无线功率传输(WPT)。作者们通过引入一种T型馈电线和一个环槽来阻挡二次谐波,同时该环槽作为缺陷接地结构(DGS)使用,以此来增强rectenna的性能。此外,使用了一种紧凑型直流通路滤波器,以平滑输出直流电。仿真结果表明,对于2.45 GHz和5.8 GHz的WPT应用,能量转换效率分别达到了75.6%和71.4%。 知识点一:极化天线 极化天线是一种电磁波辐射器,它能够发射或接收具有极化特性的电磁波。极化是一种特定的极化状态,与线性极化相对,它可以接收不同极化方向的信号,对于多路径反射和衰减具有更好的抗干扰能力。 知识点二:无线功率传输(WPT) 无线功率传输技术是利用电磁场来传输能量,无需通过物理介质。在无线通信、无线充电等领域,WPT提供了一种便利的供电或能量补充方式。 知识点三:双频天线 双频天线能够同时或在两个不同的频段上工作。在本文中,提出的天线设计需要同时适用于2.45 GHz和5.8 GHz两个频段,这在无线技术领域中是很常见的需求,因为不同的频率具有不同的应用背景和特性。 知识点四:缺陷接地结构(DGS) 缺陷接地结构通常用于天线设计中,以改善带宽、天线效率和反射损耗等性能。在本文中,环槽的使用就是作为DGS的应用例子,它优化了天线的性能。 知识点五:谐波抑制 在无线功率传输中,为了防止谐波影响系统性能,经常需要采取措施抑制二次谐波等有害信号。本文使用T型馈电线和环槽来阻挡这些谐波,保证了.rectenna的正常工作。 知识点六:整流器 整流器是将射频信号转换为直流电的关键组件,它在rectenna中起着至关重要的作用。为了提高rectenna性能,作者设计了一种紧凑型直流通路滤波器,帮助平滑输出的直流电,从而提高整体转换效率。 知识点七:转换效率 在无线功率传输系统中,转换效率是一个衡量rectenna性能的重要指标,它表示从射频能量转换到直流能量的效率。本文提到的转换效率分别为75.6%和71.4%,说明该设计在两个频率点上都具有良好的性能表现。 知识点八:研究论文的结构 一般研究论文的结构包括摘要、引言、方法、结果、讨论和结论等部分。本文摘要是对研究工作的高度概括,引言部分通常会介绍研究的背景和意义,方法部分阐述了研究的理论基础和实验设计,结果部分呈现了通过实验或模拟得到的数据,讨论部分对比分析了结果与预期目标的差异以及可能的原因,最后的结论部分则总结全文并提出未来的展望。 通过上述分析,本文详细讨论了一种用于2.45和5.8 GHz双频无线功率传输的极化rectenna的设计和实现,该设计考虑了性能优化、谐波抑制以及效率提升等关键问题。通过特定的设计技术,如引入缺陷接地结构和紧凑型直流通路滤波器,成功地将能量转换效率提升到了75.6%和71.4%的高水平。这项研究展示了天线设计领域中对于高频无线功率传输技术的深入探索及其应用前景。
2025-11-03 20:25:21 441KB 研究论文
1
利用CST微波工作室进行超表面仿真,实现从线极化到极化的极化转换器的设计与优化过程。首先,通过建立简单的十字形金属贴片模型并设定材料参数和边界条件,确保仿真环境符合实际需求。接着,通过VBA脚本优化X和Y方向的相位差,使其达到90度,从而实现线极化向极化的转变。随后,使用Python对S参数进行后处理,绘制轴比曲线图,验证极化转换效果。最后,通过Matlab进一步确认极化的旋转方向,确保仿真结果与文献一致。 适合人群:从事电磁仿真、天线设计以及超表面研究的专业技术人员。 使用场景及目标:适用于需要深入了解极化转换机制及其仿真的研究人员和技术人员,帮助他们掌握CST仿真工具的具体应用方法,提高仿真精度和效率。 其他说明:文中还特别提到网格划分对仿真收敛速度的影响,建议采用六边形网格以加快收敛。
2025-10-30 11:16:27 319KB
1