COMSOL空气耦合超声仿真模型系列:多模态缺陷检测与表征技术,基于COMSOL的空气耦合超声仿真模型:涵盖Lamb波、纵波穿透及表面波检测多种应用,comsol空气耦合超声仿真模型 图1为空气耦合超声A0模态Lamb波检测2mm厚铝板内部气泡的模型。 (模型编号:1#) 图2为三维空耦导波检测2mm铝板,为节约内存,发射端含空气,未设缺陷,入射角可调。 (模型编号:2#) 图3为空气耦合超声纵波穿透法C扫(其中的一个1mm间隔线扫)检测2mm厚钢板内部气泡的模型。 分单点测量和参数化扫描两种 (模型编号:3#) 图4为空气耦合超声表面波法检测表面开口裂纹缺陷模型。 若无缺陷,右侧接收探头能接收到正常波形。 (模型编号:4#) 图5和图6分别为变厚度弯曲钢板有 无气泡缺陷时的的纵波穿透法模型。 (模型编号:5#) 注:这5个现成的模型中,二维,三维都有,请对应拿后,收到模型点计算跑完即可出结果。 ,comsol; 空气耦合超声; 仿真模型; 检测; 模型编号; 模态Lamb波; 气泡; 三维空耦导波; 发射端; 入射角; 单点测量; 参数化扫描; 纵波穿透法; 表面开口裂纹缺陷。,
2025-07-13 22:45:01 6.41MB sass
1
内容概要:本文详细介绍了RAG(检索增强生成)技术的核心思想、优点、缺点及其实现流程。RAG通过从外部知识库动态检索相关信息来增强大语言模型(LLM)的上下文,从而生成更准确、更真实的回答。其核心优势在于知识更新灵活、减少幻觉、高可追溯性和领域适配成本低。然而,RAG也面临依赖检索质量、系统复杂性和额外延迟等问题。文中还探讨了RAG的具体实现流程,包括加载文件、文本向量化、匹配相似文本和生成回答等步骤。此外,文章还介绍了向量检索与传统倒排索引的区别、Embedding的重要性、RAG的工作流程优化方法,以及RAG在不同场景下的应用优势。 适用人群:对自然语言处理、信息检索和大语言模型有一定了解的研究人员和工程师;希望深入了解RAG技术及其应用场景的从业者。 使用场景及目标:①需要实时更新知识的场景(如新闻、金融);②领域专业性强的任务(如医疗、法律);③需要提供可解释
1
在当前科技快速发展的背景下,人工智能(AI)技术的融合应用成为推动社会发展的重要力量。2025 AI原生多模态数据智能解决方案白皮书详细探讨了人工智能技术在处理和分析多模态数据方面的前沿进展和实际应用问题。白皮书强调,随着类人脑计算能力的崛起,非结构化数据的价值正在被逐渐挖掘,但企业在落地实施时仍面临诸多困境。 文档指出,人工智能在处理复杂问题时表现出色,尤其在数学和科学领域,这使得AI具备了解决多模态数据的潜力。多模态数据指的是同时涉及文本、图像、音频和视频等多种类型的数据形式。白皮书中提及,AI原生的解决方案强调与传统方法的区别,在处理数据时更加高效和精确,能够同时处理多种数据类型并提供综合的分析结果。 在GenAI时代,数据挑战主要体现在数据处理的规模和复杂性上。数据的种类繁多,来源广泛,且包含大量的非结构化信息,这对数据分析技术提出了更高的要求。白皮书提出,多模态数据智能解决方案能够针对不同行业的特定需求,提供定制化的数据处理和分析服务。例如,金融机构可能需要使用多模态数据分析来识别风险和欺诈行为;而医疗领域则可能运用此技术来分析病例图像和患者历史记录,以提高疾病诊断的准确性。 文档中还讨论了AI在典型行业场景落地时遇到的难题。在医疗领域,AI解决方案可以协助医生进行更准确的诊断和治疗规划,但这需要大量的高质量数据作为支撑,同时也要克服隐私和安全上的挑战。在教育领域,AI能够提供个性化的学习计划,但需要考虑到教育内容的多样性和学习者个体差异。此外,在娱乐和媒体行业,AI技术被用于内容推荐和创作辅助,但其内容创造的深度和质量仍是一个挑战。 白皮书还强调,AI技术的应用需要跨越语言和文化差异,以实现在全球范围内的推广。这包括对多种语言的理解和处理能力,以及对不同文化背景下的数据的适应能力。此外,AI技术还应考虑到数据的隐私保护和合规性问题,确保在推动技术进步的同时,也能够保护用户的隐私权益。 文档最终提出了实现AI原生多模态数据智能解决方案的关键要素:强大的计算能力、高效的算法、多样化的数据处理能力和不断进步的AI学习能力。这些能力的结合,将有助于推动AI技术的进一步发展和应用,为社会带来更多的便利和进步。
2025-07-01 10:22:25 3MB AI
1
多模态大语言模型(MLLM)是近年来人工智能领域中一个非常活跃的研究方向,它将原本仅处理文本信息的语言模型扩展到可以处理包括视觉、听觉等多种类型数据的模型。MLLM不仅能够执行传统的NLP任务,还能处理更复杂的多模态任务,如基于视觉内容的理解、推理和生成等。这一领域的发展,正逐渐突破传统大语言模型(LLM)的限制,赋予模型更为全面和深入的理解能力。 背景介绍部分指出了LLM正走向多模态的趋势。LLM通过大规模的预训练已经能够在文本上执行各种任务,包括但不限于文本分类、命名实体识别、高级推理等。然而,传统的LLM无法处理图像、声音等非文本信息,这是它们无法完成如基于图像内容生成文本描述等任务的原因。在认识到这一局限后,多模态大语言模型应运而生,它能够接收和处理来自多种模式的数据,例如图像和文本的结合。 介绍部分详细阐述了MLLM的基本方面,包括其模型架构、数据与训练方法以及模型评估。在模型架构方面,MLLM一般包含编码器、连接器和大语言模型三个部分。编码器用于处理视觉信息,通常使用基于CLIP预训练的视觉变换器(ViT)。连接器则在保持视觉token数量不变的情况下,使用MLP结构进行投影,以实现视觉特征与文本特征的整合。Q-Former技术被用来压缩图片token,提高运算效率,使之能更好地与文本信息对齐。 在数据和训练方法方面,MLLM通过两个阶段进行训练。第一阶段是模态对齐训练,旨在将视觉语义空间与文本空间对齐,通常使用大量图文配对数据,如caption数据。第二阶段为指令微调训练,主要提升模型的指令遵循能力,使其能够泛化到各种任务,如视觉问答(VQA)任务、物体检测等。多轮对话形式的数据用于指令格式的训练。 模型评估部分则介绍了MLLM在不同级别的基准测试中的表现。常规任务的Benchmark关注具体的特定任务和特定指标,如VQA任务的准确率。专门的Benchmark则不仅关注模型的感知能力,也关注推理等能力,其评估任务通常更为复杂和困难。 演进部分探讨了MLLM如何实现更高分辨率的视觉处理能力。随着模型对信息的处理精度要求提高,如何提高视觉编码器的分辨率成为研究的焦点。提出的两种思路,一是直接使用更高分辨率进行微调,例如将224x224分辨率的图片调整到448x448分辨率;二是将大分辨率图片切割成多块小分辨率图片进行处理,同时保留一张低分辨率的完整图片作为全局特征。 团队相关工作介绍部分并没有具体信息,未来展望部分也未提供内容,因此无法在此详细描述。但可以预见,随着多模态大语言模型研究的深入,未来模型将会在理解和处理多模态信息的能力上实现新的突破,特别是在处理复杂任务、提升模型的泛化能力和推理能力方面。 多模态大语言模型正在以强大的势头推动人工智能技术的进步。它不仅为当前的问题提供了新的解决思路,还为未来人工智能的发展开辟了新的方向。随着技术的不断演进,我们有理由相信MLLM将在更多领域展现其潜力和价值。
2025-06-20 15:46:54 4.28MB
1
在金融领域中,随着技术的发展,风控面临着一系列新的问题和挑战。其中,欺诈手段的层出不穷以及团伙作案的隐蔽性提高,使得现有的风控系统难以应对。黑产和中介攻击手段的升级,如设备更换、联系人变化和不同作案场所等,进一步增加了风险识别的难度。此外,AI欺诈手段如换脸、换声等技术的使用,使得不法分子可以利用高逼真的生成式AI技术绕过摄像头采集,实施攻击。这些挑战导致了模型性能出现瓶颈,传统的建模方法难以应对日益高明的AI欺诈手段。 为应对这些挑战,王小东提出了基于大模型的多模态智能风控解决方案。大模型结合了自然语言处理(NLP)和计算机视觉(CV)的能力,可以对结构化和非结构化的数据进行分析处理。生成式大模型主要进行文本、视频、图像的生成,而其他非生成式大模型则以概率输出,能够在金融领域参与策略决策和应用。通过融合这些技术,金融机构可以更好地识别和预防各种新型风险。 文章中提到了一系列具体应用案例,包括身份证风控。不法分子利用各种手段对身份证进行造假,如脏污、字体造假、贴纸等,甚至进行拼接和人像替换,以绕过风控系统。此外,攻击手段还包括3D面具、电子头、AI换声等高技术含量的伪造行为。这些攻击手段的多样化和逼真性,使得金融机构必须提高其风控技术的水平。 在风控技术方案中,生成式大模型可以通过对话问答生成标签实现风控,而非生成式大模型则通过训练模型概率来实现。大模型结合小样本微调可以快速开发出针对性的风控策略。方案强调需要积累大量的正负样本,并且模型主干网络需要统一,而Head层可以不一致。 文章还探讨了大模型在金融风控中的可行性,提出将大模型与音视频通讯能力、智能客服、智能催收等多方面技术结合的可能性。例如,MaaS(Model as a Service)智能客服和智能营销能够提升客户服务效率,而RTC(Real-Time Communication)技术则可以实现实时风控。 金融风控正面临前所未有的挑战,而多模态智能风控方案的落地实践,特别是结合大模型的技术,提供了新的解决方案。这些方案不仅提高了模型性能,也拓宽了风控策略的应用范围。未来,金融风控技术将更加注重与人工智能技术的结合,以应对更加复杂和多变的风险挑战。
2025-06-14 15:05:12 10.7MB
1
多模液芯光纤干涉的实验研究主要探讨了多模液芯光纤的一些基本性质,包括干涉条纹的最大可见度条件,并且提供了两种基于干涉传感的测量结果。本文所探讨的光学干涉传感技术是近年来发展迅猛的一个领域,它基于干涉原理,具有极高的灵敏度,因而受到了广泛关注。 文章指出单模光纤相较于多模光纤,在干涉条纹的产生和观察方面具有优势。单模光纤输出的光具有相同的位相和振幅,这使得干涉条纹容易产生并且条纹清晰。然而,多模液芯光纤具有较大的芯径,这使得它们在与光源的耦合、干涉场的强度以及干涉条纹的观察方面具有优势,尽管它们的干涉条纹不如单模光纤的那样简单和清晰。 文章介绍了多模液芯光纤干涉的几个关键性质。基于电磁场理论,阶跃型多模光纤可以通过逐渐改变入射光束的角度来激发连续变化的模式(模带)。每一种模式具有不同的传模常数和延迟时间,而光纤的光线理论为较大的芯径光纤提供了简单明了的分析结果。例如,子午线的最小延迟时间对应于入射角度为0度,而最大延迟时间则对应于入射角度达到最大值。 进一步,文章探讨了如何获得双光路液芯光纤干涉的最大条纹可见度。通过使用自制的液芯光纤和He-Ne激光器作为相干光源,并采用特定的干涉装置进行实验,得出了不同入射光强和不同背景下的最大干涉条纹可见度。实验表明,应选择模变换系数小的光纤以获得高质量的干涉条纹。 文章还讨论了多模光纤干涉的特性,特别是模带的特性,以及如何通过选择具有窄模带的高质量光纤以获得清晰的干涉条纹。这一特性对于多模光纤传感技术尤其重要。由于多模光纤输出的光不是一个模,而是一个模带,因此在多模光纤传感中应选择模变换系数小的光纤,以保证干涉条纹的质量。 另外,文章强调了模变换系数对多模光纤干涉的影响。模变换系数较小的光纤在多模光纤干涉传感中具有更多的优越性,如保偏性好,便于精确测量等。这为多模光纤干涉传感的研究提供了重要的理论基础和实验指导。 文章还提供了一些实验数据和图表来支持其理论分析和结论。这些数据显示了不同实验条件下如何通过改变入射角度和光纤长度来恢复最大条纹可见度,以及如何通过实验装置和实际操作来实现对干涉条纹可见度的精确控制和测量。 综合来看,多模液芯光纤干涉的实验研究不仅为多模光纤干涉传感提供了理论上的分析框架,而且通过一系列实验验证了相关理论和方法的可行性。这些研究结果对于光纤传感技术的发展具有重要意义,特别是在需要高灵敏度和高质量干涉条纹观测的应用场景中。通过持续的研究和探索,多模液芯光纤干涉技术有望在未来得到进一步的发展和应用。
2025-06-04 15:00:18 3.05MB 干涉条纹 theor
1
内容概要:本文档是一份面向零基础的学习笔记,详细介绍了多模态模型的基础理论和技术要点,主要包括以下几个方面:初识Transformer和NLP基础,深入讲解Vision Transformer (ViT)的工作原理及其代码实现;详细介绍CLIP模型,涵盖模型架构、代码结构和训练过程;解析BLIP、BLIP2、Flamingo、MiniCPM-V等多个先进的多模态模型,涵盖预训练、图文对比学习、图文匹配、文本生成等方面的技术细节。此外,文档还提供了动手实验指南,帮助读者在实践中加深理解。 适合人群:初学者,尤其是对多模态模型感兴趣的科研人员、开发者。 使用场景及目标:适用于希望快速入门多模态模型领域的学习者。通过对这些模型的理解和实践,读者能够掌握多模态模型的基本原理和实际应用,为进一步研究和开发打下坚实的基础。 其他说明:文档不仅包含理论讲解,还提供了具体的代码示例和实践经验,适合结合代码进行学习。
2025-05-12 11:19:14 4.39MB CLIP Transformer
1
基于多模态智能算法的DGA变压器故障诊断系统:融合邻域粗糙集、引力搜索与支持向量机技术,基于邻域粗糙集+引力搜索算法+支持向量机的DGA变压器故障诊断。 ,核心关键词:邻域粗糙集; 引力搜索算法; 支持向量机; DGA; 变压器故障诊断,基于三重算法的DGA变压器故障诊断 随着智能电网技术的快速发展,电力系统的安全运行越来越受到重视。在电力系统中,变压器作为关键的设备之一,其运行状态直接关系到整个电网的稳定性。变压器故障诊断技术因此成为电力系统安全的重要组成部分。传统的变压器故障诊断方法依赖于定期的预防性维护和人工经验判断,存在着时效性差、准确性不高等问题。随着数据挖掘和人工智能技术的发展,基于数据的故障诊断方法成为研究热点。 在众多数据驱动的变压器故障诊断方法中,Dissolved Gas Analysis(DGA)技术因其能有效反映变压器内部故障状态而被广泛应用。DGA是通过对变压器油中溶解气体的分析,判断变压器的故障类型和严重程度。然而,DGA数据的处理和分析往往面临数据维度高、非线性特征显著、模式识别复杂等挑战,常规的单一智能算法很难取得理想的效果。 为了解决上述问题,研究者们提出了将多种智能算法相结合的多模态智能算法,以期提高故障诊断的准确性和可靠性。基于邻域粗糙集(Neighborhood Rough Set,NRS)、引力搜索算法(Gravitational Search Algorithm,GSA)和支持向量机(Support Vector Machine,SVM)的多模态智能算法融合技术应运而生。这些算法的融合利用了各自的优势,能够有效地处理高维数据,识别非线性模式,并提供准确的故障诊断。 邻域粗糙集是一种处理不确定性的数据挖掘工具,它可以用来从大数据中提取有效的决策规则。在变压器故障诊断中,邻域粗糙集能够通过分析DGA数据的特征,简化问题,提取出关键的故障信息。 引力搜索算法是一种新兴的全局优化算法,其灵感来源于万有引力定律。在变压器故障诊断中,引力搜索算法通过模拟天体间的引力作用,搜索最优化的故障诊断模型参数,从而提高诊断的准确性。 支持向量机是一种基于统计学习理论的机器学习算法,它通过在特征空间中寻找最优超平面来实现分类。在故障诊断中,支持向量机能够对变压器的故障类型进行分类,提高故障识别的准确率。 将这三种算法相结合,形成了一个高效、准确的变压器故障诊断系统。该系统首先利用邻域粗糙集对数据进行预处理,简化问题并提取重要特征;随后,通过引力搜索算法优化支持向量机的参数;支持向量机根据优化后的参数进行故障分类,提供诊断结果。 该系统的研究成果不仅为变压器故障诊断提供了新的思路和技术手段,而且对于智能电网的稳定运行具有重要的理论和实际意义。通过该系统,可以实现对变压器潜在故障的及时预警和精准诊断,有效防止因变压器故障引起的电力系统事故,保障电力供应的连续性和安全性。 基于邻域粗糙集、引力搜索算法和支持向量机的多模态智能算法融合技术,在变压器故障诊断领域展现出强大的应用潜力,对提升电力系统的智能化水平和故障预警能力具有重要作用。未来,随着算法的不断优化和数据采集技术的进步,该技术有望在更多的电力设备故障诊断中得到应用,为智能电网的安全稳定运行提供强有力的技术支持。
2025-05-01 15:25:21 204KB 数据结构
1
DataFunSummit2025知识图谱峰会嘉宾演讲PPT合集
2025-04-16 14:41:48 13.66MB
1
随着科技的飞速发展,人工智能(AI)已经成为我们生活中的重要组成部分,它在不同领域的应用也日益广泛。近年来,多模态大模型作为AI领域的新兴技术,正逐渐受到学术界和产业界的广泛关注。多模态大模型是指能够处理多种类型数据输入的大型人工智能模型,它不仅能够处理文本信息,还能理解图像、声音、视频等多种数据类型,从而实现更为丰富的交互体验和更准确的信息处理。 在多模态大模型的背景下,新一代人工智能技术范式应运而生。这一技术范式的核心在于融合处理视觉、听觉以及文本等多种信息源,使得机器能够对复杂的现实世界有更加全面和深入的理解。这样的模型对于提升人工智能系统的认知能力至关重要,因为它能够在不同的情境中,更准确地把握人类的意图和行为。 “多模态大模型:新一代人工智能技术范式”这一著作由刘阳和林倞联合撰写,旨在全面介绍多模态大模型的理论基础、关键技术、以及在不同领域的应用实践。作者通过深入浅出的阐述,让读者能够理解多模态大模型不仅仅是技术的简单叠加,而是通过深度学习技术,尤其是神经网络技术的深入应用,使得模型能够自主学习和整合不同模态数据之间的关联性,实现跨模态的理解和交互。 书中可能涉及的关键技术包括但不限于:多模态数据融合技术、深度学习框架的优化、大规模数据集的构建和处理、自然语言处理技术在图像和声音信息处理中的应用等。此外,作者也可能探讨了多模态大模型在医疗诊断、无人驾驶、智能交互等具体领域的应用案例,以及在提升用户体验、辅助决策等方面的应用前景。 该书的出版不仅为人工智能领域的研究者和工程师提供了宝贵的参考资料,也为关心人工智能发展趋势的广大读者打开了一扇了解新技术范式的窗口。随着技术的不断进步和应用领域的不断拓展,多模态大模型无疑将成为推动人工智能技术革命的重要力量,对人类社会的生产生活方式产生深远的影响。 此外,书名中提到的“新一代人工智能技术范式”强调了这种模型在理论和实践中的创新性。新一代范式意味着不仅仅是技术的升级,更是在认知模型、计算框架、以及应用模式上的一次全面革新。这种革新将使得人工智能系统更加接近于人类的多感官和多认知模式,从而更好地服务于人类社会的需求。 在《多模态大模型:新一代人工智能技术范式》一书中,刘阳和林倞深入探讨了这些创新性的理论和技术,同时对于如何在实际应用中发挥这些技术的最大价值提供了指导和建议。通过阅读本书,读者不仅可以获得关于多模态大模型的专业知识,更可以把握未来人工智能技术的发展趋势,为个人或组织在这一领域的深入研究和创新应用打下坚实的基础。
2025-04-11 08:27:15 29.28MB
1