内容概要:本文档围绕四旋翼飞行器的控制、路径规划与轨迹优化展开,基于Matlab平台提供了完整的仿真与代码实现方案。内容涵【无人机】四旋翼飞行器控制、路径规划和轨迹优化(Matlab实现)盖无人机的动力学建模、控制系统设计(如PID、MPC、深度强化学习等)、三维路径规划算法(如A*、遗传算法、多目标粒子群优化NMOPSO)以及轨迹优化方法,尤其关注复杂威胁环境下的多无人机协同路径规划策略。文档还整合了多种智能优化算法与先进控制理论的应用案例,展示了无人机技术在科研仿真中的系统性解决方案。; 适合人群:具备一定Matlab编程基础,从事无人机控制、路径规划、智能优化算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握四旋翼无人机的建模与控制实现方法;②学习基于智能算法的三维路径规划与轨迹优化技术;③实现多无人机协同任务中的路径协同与避障策略;④为科研项目、毕业设计或工程仿真提供可复用的代码框架与技术参考。; 阅读建议:建议结合文档中的代码实例与理论说明逐步实践,重点关注算法实现细节与Matlab仿真模块的搭建,同时可参考文中提供的网盘资源获取完整代码与模型,提升科研效率与系统设计能力。
1
马泽维兹 一个简单的交互式可视化工具,用于选择寻路算法。 用香草JavaScript编写。 包括加权算法(Dijkstra,A *)和非加权算法(BFS,DFS)。 这些是通过最小堆,堆栈和队列的组合来实现的。 控制项 单击并拖动任何空的图块以设置墙或权重。 单击并拖动开始/结束节点以重新放置它们。 选择一种算法或通过其下拉菜单调整其速度 使用颜色切换调整性能影响
2026-02-04 20:19:54 142KB visualization javascript learning algorithm
1
遗传算法在计算机流体动力学中用于多目标优化 这是莱昂大学(University of Leon)为航空航天工程学士学位而开发的高级论文。 但是,这个项目是在佛蒙特大学的交流计划期间完成的。 本文的主要目的是将诸如遗传算法(GA)等超启发式优化方法与具有多目标(MO)的计算机流体动力学(CFD)模拟的航空航天案例相结合。 作者: 哈维尔·洛巴托·佩雷斯(Javier Lobato Perez) 顾问: 伊夫·达比夫(Yves Dubief)和拉斐尔·桑塔马里亚(Rafael Santamaria) 机构: 佛蒙特大学-机械工程系 该项目需要某些软件在计算机上才能正常运行。 必备条件是python (使用的版本为3.6.1 )(使用jupyter notebook或jupyter lab执行笔记本并了解该过程的基本知识), OpenFOAM (使用5.00版)和paraView (
2026-02-03 11:28:10 92.99MB genetic-algorithm
1
在Android开发中,X5Webview是一个非常重要的组件,它是由腾讯公司开发的浏览器内核,主要用于提升移动应用中的网页浏览体验。X5Webview基于WebKit,并且集成了QQ浏览器的一些高级特性,如硬件加速、视频播放、JavaScript交互等。在许多App中,我们常常需要在原生Android代码和网页内容之间进行交互,这时候就需要利用到X5Webview与JS的交互能力。 X5Bridge是腾讯专门为X5Webview设计的一个三方库,它提供了一种高效、便捷的方式来实现Android native代码与JavaScript之间的通信。这个库的主要功能包括: 1. **JavaScript调用Android Native方法**:通过X5Bridge,JavaScript可以轻松地调用Android原生的方法,例如获取设备信息、访问本地资源、启动其他Activity等。这对于网页应用来说,能够极大地扩展其功能。 2. **Android Native调用JavaScript函数**:反之,Android代码也可以通过X5Bridge来执行JavaScript代码,这在需要更新网页状态或者触发某些JavaScript逻辑时非常有用。 3. **安全机制**:X5Bridge提供了安全机制,可以防止恶意的JavaScript代码对Android应用造成破坏。例如,它可以限制JavaScript能够访问的Android权限,确保数据安全。 4. **性能优化**:由于X5Webview和X5Bridge的集成,使得跨平台通信的效率得到提升,减少了延迟,提高了用户体验。 5. **事件监听**:X5Bridge还支持事件监听,可以在Android和JavaScript之间传递事件,比如点击事件、页面加载完成事件等,让两者可以协同工作。 在实际使用中,开发者可以通过以下步骤集成并使用X5Bridge: 1. 添加依赖:将zorozhao-X5Bridge-2eb8127这个库导入到Android项目中,通常是通过Gradle添加依赖。 2. 初始化X5Bridge:在WebView初始化时,调用X5Bridge的初始化方法,注册需要暴露给JavaScript的接口。 3. 注册Java方法:使用X5Bridge提供的API,将需要被JavaScript调用的Java方法注册进去,通常这些方法会带有特殊的注解以标识它们。 4. 调用JavaScript:在需要执行JavaScript代码的地方,调用X5Bridge的`callJs`方法,传入JavaScript代码字符串。 5. 处理回调:如果Java方法需要接收JavaScript的返回结果,可以使用异步回调或者Promise的方式进行处理。 6. 监听事件:注册事件监听器,以便在JavaScript触发特定事件时,Android端可以做出响应。 通过X5Bridge,开发者可以构建更强大的混合型应用,既利用了Web技术的便利性,又充分利用了Android原生功能的丰富性。在实际项目中,合理使用X5Bridge可以提高开发效率,提升应用的用户体验。不过,需要注意的是,过度依赖JavaScript和Webview交互可能会增加应用的复杂性,因此在设计时应尽量保持模块化和清晰的架构。
2026-01-30 09:38:21 442KB Android开发-其它控件
1
PaperLib PaperLib是一个插件库,用于与Paper特定的API(例如异步块加载)接口,并具有优美的后备功能,可保持与Bukkit和Spigot API的兼容性。 API 在PaperLib类中可以找到所有API调用作为静态util方法。 getChunkAtAsync public class PaperLib { public static CompletableFuture< Chunk> getChunkAtAsync ( Location loc ); public static CompletableFuture< Chunk> getChunkAtAsync ( Location loc , boolean gen ); public static CompletableFuture< Chunk> getChunkAtAsync ( World world , int x , int z ); public static CompletableFuture< Chunk> getChunkAtAsync ( World worl
2026-01-25 12:53:24 76KB minecraft library spigot paper
1
本文研究了改进免疫算法与HFSS联合仿真技术在天线多目标优化中的应用。免疫算法是一种模拟生物免疫系统机制的优化算法,它在处理复杂的多目标优化问题上显示出独特的性能和优势。本文首先对免疫算法和HFSS联合仿真技术进行了介绍,包括免疫系统的基本原理、免疫算法的类型及特点,以及高频电子系统分析软件HFSS的功能和应用范围。 随后,文章详细探讨了天线多目标优化问题,解释了多目标优化的概念以及天线设计中常见的多目标优化问题。在改进免疫算法的研究中,本文阐述了其理论基础和主要方法,特别是在天线优化模型的构建和实验环境搭建中的应用。 此外,文章还探讨了HFSS联合仿真技术与改进免疫算法的结合,分析了深度学习与改进免疫算法结合的可能性及其在HFSS联合仿真技术中的应用。通过实际天线性能对比分析,验证了改进免疫算法在天线多目标优化中的有效性,并对算法的收敛性能进行了评估。 文章总结了主要研究成果,并对未来发展进行了展望。本文的研究成果不仅有助于提高天线设计的性能,也为其他领域的多目标优化问题提供了有效的解决方案和理论支持。 研究背景表明,随着无线通信技术的快速发展,对天线设计提出了越来越高的要求,包括更好的辐射效率、更宽的带宽和更高的增益等。在这样的背景下,寻找一种高效、精确的天线优化方法显得尤为重要。 天线多目标优化问题在设计过程中需要解决多个参数和指标的优化,常规的优化方法在处理这类问题时往往存在效率低下、易陷入局部最优等问题。而改进免疫算法通过模拟生物免疫系统的多样性和高效性,能够处理复杂的多目标优化问题,从而克服了传统优化方法的不足。 HFSS联合仿真技术是一种高度集成的高频电磁场仿真软件,能够模拟和分析复杂的高频电子系统,包括天线设计。它能够提供精确的仿真结果,为天线设计提供理论依据。将改进免疫算法与HFSS联合仿真技术结合起来,可以充分利用两者的优势,提高天线优化的效率和精度。 改进免疫算法在天线多目标优化中的应用,通过改进算法的参数设置、种群规模和进化策略等,进一步提高了算法的搜索效率和解的多样性。同时,结合HFSS仿真技术,可以在算法的每一代中对天线模型进行精确仿真,从而有效地评估解的质量,进一步指导算法搜索的方向。 通过实验环境搭建与数据采集,本文在实际应用中验证了改进免疫算法与HFSS联合仿真技术在天线多目标优化中的有效性。实验结果表明,该方法能够在较短的时间内找到满足设计要求的天线结构参数,优化后的天线性能得到了显著提升。 展望未来的研究方向,本文提出了一些可能的改进措施和探索领域,例如算法的进一步优化、处理更复杂的多目标优化问题,以及在其他工程问题中的应用等。这将为相关领域的研究提供新的思路和方法。
2026-01-22 20:39:26 96KB 人工智能
1
本文介绍了多目标向光生长算法(MOPGA)在多无人机协同路径规划中的应用。MOPGA是基于植物细胞响应阳光生长模式提出的元启发算法,适用于处理多目标优化问题。文章详细阐述了多目标无人机路径规划模型,包括路径成本、约束成本(威胁成本、飞行高度成本、平滑成本)的计算方法,并提供了完整的MATLAB代码实现。该算法能够有效解决多起点多终点的无人机路径规划问题,且起始点、无人机数量和障碍物均可自定义,具有较高的实用性和灵活性。 多目标向光生长算法(MOPGA)是一种新颖的元启发式算法,它的提出受到了植物细胞响应阳光生长模式的启发。MOPGA算法在多无人机协同路径规划中的应用展现了其解决复杂多目标优化问题的强大能力。在这一应用中,研究者们关注于路径规划模型的构建,该模型涉及到多个成本因素的计算,包括路径成本、威胁成本、飞行高度成本和平滑成本等。 通过构建这样一个模型,MOPGA算法能够针对具有多个起点和终点的复杂场景,规划出符合安全、高效和经济要求的路径。研究者们通过MATLAB编写的源代码实现了这一算法,并提供了一个灵活的框架,允许用户根据实际情况自定义起始点、无人机数量和障碍物等参数。 MOPGA算法之所以在多无人机路径规划领域具有实用性,是因为它不仅可以处理复杂的多目标问题,还能在存在诸多约束的环境中找到最优或近似最优的解。算法模拟了植物生长过程中细胞对阳光方向的反应,通过迭代过程,逐渐引导解的搜索方向,从而找到满足多个目标和约束条件的路径方案。 相较于传统的优化算法,MOPGA算法在计算效率和解的质量上表现出较大的优势。它的元启发特性使得算法能够跳出局部最优,寻求全局最优解。同时,MOPGA在并行计算方面也显示出良好的潜力,这意味着算法能够在多核处理器上更加快速地进行大规模问题的求解。 MOPGA算法在无人机路径规划方面的应用,展示了它在实际问题中的广泛适用性。无人机在许多领域都有着重要的应用价值,例如农业监测、灾害评估、军事侦察和物流运输等。在这些应用中,高效的路径规划不仅可以提高无人机任务的执行效率,还能提高安全性,降低运行成本。 MOPGA算法为多无人机协同路径规划提供了一个创新和有效的解决方案,具有重要的研究价值和应用前景。随着无人机技术的进一步发展,该算法的应用将更加广泛,其理论和实践意义也将更加突出。
2026-01-22 20:38:38 925KB 多目标优化 MATLAB
1
LLM交互程序功能详细说明 ## 1. 程序概述 LLM交互界面是一个基于Python和Tkinter开发的图形化应用程序,用于连接和使用各种大型语言模型(LLM)服务,如OpenAI兼容API、Ollama等。程序提供了丰富的配置选项和交互功能,允许用户自定义提示词、管理知识库文件,并与语言模型进行多种形式的交互。 ## 2. 界面结构 程序界面由四个主要标签页组成: ### 2.1 交互界面 - **输入区域**:用于输入用户文本 - **信息显示**:展示当前使用的提示词名称和加载的知识库文件数量 - **结果区域**:显示模型响应和请求过程信息 - **控制按钮**:发送请求和清除结果 ### 2.2 提示词与知识库 - **提示词管理部分**: - 提示词列表显示 - 提示词编辑区(名称和内容) - 提示词操作按钮(添加、删除、应用、保存) - **知识库管理部分**: - 文件列表 - 文件操作按钮(添加、移除、清除、保存) - 文件预览区域 ### 2.3 模型配置 - **服务器设置**:服务器URL、模型名称、API密钥 - **模型参数**:温度、top-p、top-k、重复惩罚、最大生成长度 - **配置保存**:保存所有配置到本地文件 ### 2.4 高级设置 - **API配置**:端点路径、请求格式、响应格式 - **快速API预设**:用于快速切换不同服务类型的配置 - **原始请求预览**:查看和编辑原始JSON请求格式 ## 3. 核心功能详解 ### 3.1 提示词管理系统 提示词系统允许用户创建、保存和管理多个命名的提示词模板: - **创建提示词**:用户可以输入提示词名称和内容,点击"添加"或"保存"按钮 - **编辑提示词**:选择已有提示词,修改内容后保存 -
2026-01-22 00:18:32 45KB
1
Qt框架下OBJ与STL模型文件加载与展示Demo:支持鼠标交互移动、缩放及旋转功能,Qt框架下的模型文件加载与交互操作:obj和stl文件实例的加载、鼠标移动、缩放与旋转演示,Qt加载模型文件obj或者stl实例,支持鼠标移动缩放旋转demo ,Qt加载模型文件obj/stl; 实例化模型; 支持鼠标操作; 缩放旋转demo,Qt加载OBJ/STL模型文件并支持鼠标操作demo 在Qt框架下实现OBJ与STL模型文件的加载和展示是一个涉及计算机图形学和用户交互技术的复杂任务。OBJ和STL是广泛应用于3D打印和3D建模领域的文件格式,分别代表了Wavefront Technologies开发的几何体模型标准和STEREOLITHOGRAPHY(立体光固化)文件格式。在Qt框架中加载这类文件,需要对Qt的图形视图框架、事件处理机制以及3D图形渲染有深入的理解。 该Demo演示了如何利用Qt框架实现对OBJ和STL模型文件的加载,并且通过鼠标交互实现了模型的移动、缩放和旋转功能。这一过程涉及到Qt中的多个模块,比如Qt 3D模块提供了用于3D图形渲染和场景管理的类和功能,而Qt的事件处理系统则负责捕获和响应用户操作,如鼠标点击、拖动等,从而实现对模型的交互控制。 在具体的实现过程中,首先需要读取OBJ或STL格式的文件。OBJ文件格式较为复杂,包含了顶点数据、法线、纹理坐标、材质属性等信息,而STL文件相对简单,主要包含三角形的顶点信息。在Qt中,可以通过文件I/O操作读取这些数据,然后使用适当的图形库(如OpenGL)将其渲染到3D视图中。 对于用户交互部分,Demo展示了如何处理鼠标事件来实现对3D模型的移动、缩放和旋转操作。这通常需要在Qt的事件系统中拦截鼠标事件,并根据用户的操作(例如,鼠标移动时改变模型的方向,滚轮事件来调整模型大小等)来动态调整模型的变换矩阵。变换矩阵是3D图形学中用于描述模型在空间中的位置、方向和大小的重要概念。 文档标题中提到的“柔性数组”可能是对Qt框架中某些动态数据结构的一种比喻,或特指某种用于存储模型数据的数组结构,其大小可以根据模型的复杂度和渲染需求进行调整。 在文件名称列表中,可以见到多个文档标题都与加载和交互演示相关,表明了该Demo不仅提供了代码实现,还可能包含了详细的说明文档,指导用户如何使用这些功能,并解释了背后的技术原理。这些文档可能包含了对Qt框架中相关类的介绍,如何使用这些类加载模型文件,以及如何处理图形渲染和事件响应的细节。 Qt框架下OBJ与STL模型文件加载与展示Demo不仅是一项实用性工具,也是深入学习Qt图形编程的良好案例,它展示了如何在跨平台的开发环境中实现复杂的3D模型交互操作,对开发者来说具有较高的参考价值。
2026-01-20 16:17:44 1.41MB 柔性数组
1
在现代工业设计中,各种专业软件被广泛应用于过程模拟和工程计算。其中,Aspen EDR、HTRI等作为专门用于热交换器设计和分析的工具,它们与其他流程模拟软件如Aspen Plus、Aspen HYSYS、PRO II等的数据交互尤为重要,因为这直接关系到整个工程设计的效率和准确性。 Aspen EDR(Engineering Design and Rating)是 AspenTech 公司开发的热交换器设计和评级软件,它能够设计出满足工艺要求的热交换器,并对已有热交换器进行评级。HTRI(Heat Transfer Research Institute)则是另一个在热交换器设计和研究方面具有权威性的工具,被广泛应用于石油化工和相关行业中。 Aspen Plus 是一个强大的化学工程流程模拟软件,它能够模拟化工生产中的各种复杂过程。Aspen HYSYS 则更侧重于模拟石油天然气以及化学工程中的加工过程。两者在流程模拟方面各有优势,但在进行热交换器的详细设计时,往往需要借助专业的热交换器设计软件,如Aspen EDR和HTRI。 为了提高设计效率和准确性,Aspen EDR和HTRI都提供了与其他软件进行数据交互的接口。例如,Aspen Plus 与 Aspen EDR 的数据交互可以通过导入导出功能实现。具体来说,Aspen EDR 可以导入 Aspen Plus 的换热器模块数据,用户可以打开Aspen Plus 文件,选择需要的换热器模块,如 SHELLTUB,然后导入压力和数据点信息,完成数据的交互。此外,Aspen Plus 还可以将换热器数据传递到 Aspen EDR 中,从而在 Aspen EDR 中查看和分析换热器的运行结果。 类似地,Aspen HYSYS 也能够与 Aspen EDR 进行数据交互。用户可以在 Aspen EDR 中新建换热器模板,并导入 Aspen HYSYS 的换热器信息。操作过程中,用户可以更改导入的压力和数据点数,以适应不同的设计要求。而且,Aspen HYSYS 还提供了一个在 Aspen HYSYS 中直接使用 Aspen EDR 进行换热器设计的功能。通过该功能,工程师可以直接在 Aspen HYSYS 中设计热交换器,并将设计数据传递回 Aspen HYSYS,方便了整个设计过程的整合。 在进行工艺流程模拟时,Aspen Plus 与 HTRI 之间,以及 Aspen HYSYS 与 HTRI 之间的数据交互同样重要。这种交互可以发生在模拟过程中的各个阶段,从而确保所设计的热交换器既满足工艺要求,又能够在实际运行中达到预期的性能。 此外,尽管本文档未详述,但与 PRO II 的数据交互也是行业中的常见需求。PRO II 是一个广泛应用于过程工业设计和操作优化的流程模拟软件。HTRI 与 PRO II 的数据交互能够在工艺模拟与热交换器设计之间架起桥梁,实现数据的无缝对接。 通过上述的软件之间的数据交互,工程师可以充分利用不同软件在各自领域的专长,不仅提升工作效率,而且能够对热交换器设计的各个细节进行精确控制,保证设计结果的准确性和可靠性。这对于工程设计的准确性、成本控制和风险评估都有着极其重要的意义。
2026-01-20 13:59:17 3.86MB
1