内容概要:本文提供了从零开始搭建的基于 YOLOv11 模型的混凝土缺陷检测系统教程,覆盖了整个流程,如开发配置指导,训练集搭建、模型的使用方法到最终集成图形界面交付应用等内容,尤其注重图像预处理及增广手段的有效利用,帮助读者建立高效的系统以满足工程中的实时监测需求。此外还包括对未来发展方向的具体展望,比如引入新型检测器或进一步扩展故障类别。 适合人群:适用于具有一定Python基础、想探索目标检测领域尤其是从事土木工程质量监督的技术工作者。 使用场景及目标:适合对有形结构如混凝土建筑的质量检验需要的公司部门,以提高检测的精确度同时加快检测流程的速度。 其他说明:项目代码附在文中,方便大家快速上手测试并进一步深入研究。对于那些对模型效果不满意的,本文给出了提升系统效能的具体注意点,譬如持续优化迭代以及增加系统设置自由度。
2025-09-17 16:32:49 55KB
1
应用程序
2025-09-08 13:33:49 6.6MB stm32
1
内容概要:本文详细介绍了一个使用 C++ 结合 OpenCV 部署 YOLOv11-Pose 姿态估计 ONNX 模型的实例项目。该项目不仅能实现实时的人体姿势估计功能还让用户可根据自身需求调整各种检测指标如置信度门限。同时,文中详细介绍了项目背景、特点、改进方案、必要的注意事项及其具体的实现步骤包括了所需数据的格式和预处理流程并且提供了完整且注释详尽的样例源代码帮助新手开发者快速搭建起自己的实时姿态估计系统。 适用人群:具备一定 OpenCV 操作经验的研究员和软件开发者。 使用场景及目标:在诸如健身指导、舞蹈训练、人机交互等具体情境中自动捕捉与跟踪人体的动作与姿态。 额外说明:由于本方案使用ONNX模型格式,使得将同一模型移植到多种不同软硬件平台变得更加便利。
2025-09-08 10:07:14 36KB OpenCV YOLO
1
本文提供了基于Python的高斯过程回归(GPR)的实例演示。它介绍了多输入单一输出回归的任务处理,涵盖了从生成虚拟数据到实施预测的完整流程。重点在于构建和训练GPR模型,在数据集上的表现情况以及如何解读预测结果及其不确定度范围;另外,还包括对所建立模型的有效性的多维评测。 适合人群:对机器学习感兴趣并希望通过具体案例深入理解和实际运用高斯过程回归的技术人员。 使用场景及目标:本教程的目标读者群体为想要深入了解高斯过程回归的理论依据以及其实践技巧的人群,特别是在解决涉及非参数数据的小样本回归分析、多指标评估等问题方面寻求方法的人们。 补充说明:尽管本文主要关注于高斯过程模型的具体构建步骤,但它也为感兴趣的个人指明了几项未来的拓展途径,例如改进核心公式以便更好地应对大型数据集合以及其他高级主题,有助于推动项目的不断发展完善。
2025-08-31 18:17:58 38KB 高斯过程回归 机器学习 Python
1
内容概要:该文档详细介绍了如何在MATLAB环境中实现使用贝叶斯优化方法训练多层感知机(BO-MLP)完成从多输入到单输出回归预测的工作流。整个流程涵盖了准备合成数据集、建立和训练BO-MLP模型、利用模型对新样本点做出预报以及评估预报准确度,最后还展示了预报效果对比的可视化图形。 适合人群:适用于希望借助于MATLAB工具箱从事机器学习研究尤其是专注于非线性回帰问题解决的数据科学家和工程师。 使用场景及目标:帮助研究人员能够自行搭建BO-MLP神经网络架构,并运用自动超参数寻优手段优化网络配置;旨在提升面对具体应用场景时复杂回归任务的处理能力和泛化能力。 其他说明:文中不仅提供了完整的代码样例和相应的解释说明,而且包含了所有所需的数据准备工作段落,在此基础上读者可根据自己的实际问题灵活调整各组件的具体实现细节来达到更好的应用效果。
1
本文档介绍了基于YOLOv11模型的安全帽检测系统的开发,旨在识别各种颜色的安全帽。文中涵盖了使用ONNX格式的模型、Tkinter制作的用户界面以及一系列辅助功能如数据增强的方法、置信度调整等细节,并提供了从环境搭建到最终实现的整体指导和代码示例。此外还涉及系统未来的改进步骤。该系统不仅具备良好的鲁棒性和实用性,并且具有很强的灵活性和扩展性。 适合人群:具有基本编程背景并对机器学习尤其是计算机视觉感兴趣的研究人员和从业者。 使用场景及目标:适用于工地上各类环境中对工作人员佩戴情况的有效监测,旨在提高施工场所的安全管理效能;同时也适用于研究人员学习YOLOv11及相关检测技术。 其它:系统在未来有望发展成为实时监控系统,并支持多任务处理,进一步增加其实用价值。
2025-08-26 15:15:03 38KB 深度学习 Tkinter 安全帽检测 ONNX
1
行人航位推算(Pedestrian Dead Reckoning,PDR)是一种利用传感器数据估算行人运动轨迹的技术,常应用于室内导航系统。本文将详细介绍PDR算法的原理、实现步骤以及在MATLAB中的应用。 PDR算法基于三个核心要素:步进计数、步长估计和方向感知。通过加速度传感器记录行人步态变化,计算步数;再利用步长模型估算每步距离;结合陀螺仪或磁力计数据确定行走方向。连续积累这些信息,即可构建出行人的行走轨迹。 步进计数是通过监测加速度传感器在垂直轴上的峰值实现的。行走时,脚的抬高和落下会在加速度信号上形成明显峰谷,检测这些特征点即可识别步数。步长估计方面,步长与行人步态、身高、速度等因素相关。常见的步长模型有固定步长模型、比例步长模型和自适应步长模型,实际应用中需通过实验数据校准模型以提高精度。方向感知则主要依赖陀螺仪和磁力计。陀螺仪用于测量行走过程中的角度变化,磁力计用于获取地球磁场信息以校正方向。通过对陀螺仪漂移的补偿和磁力计数据的处理,可得到准确的行走方向。 在MATLAB环境中实现PDR算法时,涉及信号处理、滤波算法(如卡尔曼滤波或互补滤波)和数据可视化。首先需读取传感器数据并进行预处理,去除噪声和异常值。然后应用步进计数和步长估计算法,结合陀螺仪和磁力计数据进行方向计算,最终以图形形式展示行人轨迹。 PDR技术在多个领域有广泛应用,如室内导航、健康监测和行为分析等。它可以为购物中心导航系统提供定位服务,用于老年人或病患的活动跟踪,也可在运动健身中评估步态和行走效率。PDR算法是实现精确行人定位的关键技术,其MATLAB实现为相关研究和开发提供了便利。通过理解和优化这套程序,可以更好地改进PDR算法,以满足不同应用场景的需求。
2025-08-18 20:35:17 51KB
1
本文档提供了在网络安全领域利用Python和K-means算法检测网络流量异常的方法。主要内容涵盖数据准备,使用合成数据进行实验以及具体实现步骤,包括必要的模块导入,数据的加载与处理。介绍了K-means聚类的应用方式,并通过对模拟数据集进行可视化显示聚类效果;最后详细分析如何识别异常数据及展示最终的效果。 适用人群:适用于具备Python基础知识的安全分析师或工程师。 使用场景及目标:适用于网络安全监测,帮助自动化地检测网络环境中可能存在的入侵事件或者异常情况。 阅读建议:此文档不仅提供源代码示例供跟随实践,还涵盖了常见问题及其改进思路,并鼓励在未来的研究中结合实际情况做适当修改和应用。
2025-08-14 10:18:33 37KB K-means Python Scikit-learn 机器学习
1
本文详细介绍了一个使用MATLAB来实现实验性时间序列预测项目的流程,涵盖从合成数据生成到基于CNN-BiLSTM结合注意力建模的全过程。首先介绍了项目背景及其理论依据。紧接着详细展示如何构造数据以及进行特征工程。在此基础上建立并自定义了CNN-BiLSTM-Attention混合模型来完成时序预测,并对整个训练、测试阶段的操作步骤进行了细致描绘,利用多个评价指标综合考量所建立模型之有效性。同时附有完整实验脚本和详尽代码样例以便于复现研究。 适用人群:具有一定MATLAB基础的研究员或工程师。 使用场景及目标:适用于需要精准捕捉时间序列特性并在不同条件下预测未来值的各种场景。 此外提供参考资料链接及后续研究展望。
2025-08-08 20:38:06 37KB BiLSTM Attention机制 时间序列预测 MATLAB
1
内容概要:本文介绍了一个基于MATLAB设计的全面电磁波传播模拟工具。该工具支持多层介质和等离子体环境下的传播特性模拟,提供了用户友好的图形界面以及丰富的可视化功能,用于研究电磁波在不同媒介中的行为。文中详细讲解了主要的实现步骤,包括数值解法、数据可视化和多指标评估等。 适合人群:适用于电磁波研究领域的科研人员、高校教师和研究生。 使用场景及目标:该模拟工具主要用于教育、科研和工程实际应用中的电磁波传播特性的研究。研究者可以通过该工具轻松地调整仿真参数,进行不同情境下的电磁波传播实验,以验证理论假设和优化系统设计。 其他说明:文章还提出了未来的改进方向,包括增加机器学习算法提高预测精度、扩展到三维仿真以及实现实时数据传输与处理。此外,提醒使用者应注意正确配置输入数据以避免模型误差过大。
2025-07-09 17:36:03 32KB MATLAB 数值解法 FDTD GUI
1