在计算机视觉领域,目标检测是一个核心任务,它涉及到识别出图像中所有感兴趣的物体,并精确地标定出它们的位置。本文所讨论的“人车目标检测-目标检测数据集”正是为了解决这一问题而存在的。该数据集主要面向的是城市交通场景中的人和车这两种目标,由于它们在日常交通监控中具有极高的重要性,因此对它们的检测能力要求甚高。 目标检测数据集通常包含了大量带有标签的图像,这些图像用于训练和测试目标检测模型。在此数据集中,“测试集”一词意味着该部分数据主要用于评估已训练模型的性能,即模型在未知数据上的表现情况。测试集通常不会用于模型的训练过程,以保证评估结果的公正性和有效性。 关于数据集的具体内容,虽然没有提供详细的图像列表,但从“test_images”这个名字可以推测,这些图像文件很可能包含城市道路、交叉路口或者停车场等典型场景,其中人和车作为目标对象被标注。每个目标对象周围会有边界框(bounding box)标记,这些边界框不仅标识出目标的位置,还指明了目标在图像中的大小和方向。 在构建目标检测数据集时,数据的多样性和代表性至关重要。数据集需要涵盖不同的天气条件、光照情况、视角以及目标大小和遮挡情况。此外,数据集的标注质量直接影响着模型训练的效果。标注需要准确无误,才能确保模型能够正确学习到目标的特征。 利用这样的数据集进行目标检测研究,可以应用各种成熟的算法,包括但不限于基于区域的检测算法(如R-CNN系列)、基于回归的检测算法(如SSD、YOLO系列)以及更先进的基于深度学习的检测方法。这些方法通过从大量带标注的图像中学习,能够自动识别出新图像中的人和车。 目标检测的应用场景非常广泛,包括但不限于智能交通系统、视频监控、自动驾驶汽车、移动设备应用等。在这些应用中,快速准确地检测到人和车的存在对于整个系统的决策至关重要。例如,在自动驾驶系统中,准确的行人和车辆检测是确保行车安全的基础;在交通监控中,车辆检测可以帮助实现交通流量的统计和分析。 “人车目标检测-目标检测数据集”为研究者们提供了一个专门针对行人和车辆的检测任务的测试平台。通过使用该数据集,研究人员可以测试和优化他们的目标检测算法,以期在现实世界的应用中达到更优的性能。
2025-10-16 13:36:00 32.03MB 目标检测 数据集
1
针对电力场景中输电线均压环的歪斜问题,本数据集提供了303张高精度标注图片,用于目标检测任务。数据集采用Pascal VOC格式和YOLO格式,每张图片都配备了对应的VOC格式xml文件和YOLO格式txt文件。VOC格式文件包含了图像的矩形框标注信息,而YOLO格式则为每张图片提供了对应的文本文件,其中标注了检测框的位置和类别信息。 该数据集被细分为两个类别,分别是“正常”(normal)和“歪斜”(skew)。在303张图片中,各类别标注的数量分别为:normal类161个标注框,skew类305个标注框,总计466个标注框。这些标注框通过labelImg标注工具绘制,使用矩形框对输电线均压环的位置进行了精确的标注。 数据集的使用注意事项包括:图片数量与标注数量一致,均为303个,且标注类别为2个。在使用这些图片进行模型训练时,需要注意到数据集是经过图片增强处理的,因此在下载之前应仔细查看图片预览以确保图片质量满足研究和开发需求。此外,开发者应明确数据集本身并不保证训练出的模型或权重文件的精度,但数据集所提供的图片和标注信息是准确且合理的。 数据集中的图片预览和标注例子对于理解标注规则和格式十分有帮助,这为研究人员和工程师在进行电力场景目标检测模型训练时提供了直观参考。通过研究和利用这个数据集,可以在电力设施维护、输电线路检测等应用场景中提高歪斜均压环的自动识别能力,进而提高电力系统的安全性和可靠性。
2025-10-14 20:44:47 1.97MB 数据集
1
内容概要:本文详细介绍了利用野火征途Pro FPGA开发板实现基于帧差法的运动目标检测与跟踪系统的全过程。首先,通过OV5640摄像头采集视频流并存储于DDR3内存中进行帧缓存。接着,采用Verilog编写帧差处理模块,计算相邻两帧之间的灰度差异,并通过二值化处理将差异结果转换为二进制图像。然后,利用边界扫描法对目标进行定位,最终通过TFT LCD、VGA和HDMI三种显示接口展示检测结果。文中还讨论了一些优化技巧,如使用Y通道代替RGB全量计算节省资源,以及解决OV5640摄像头在低光照条件下的噪点问题的方法。 适合人群:对FPGA开发有一定了解的研究人员和技术爱好者。 使用场景及目标:适用于需要进行运动目标检测与跟踪的应用场合,如安防监控、智能交通等领域。目标是帮助读者掌握如何在FPGA平台上构建高效的运动目标检测系统。 其他说明:文中提供了详细的代码片段和调试经验分享,有助于读者更好地理解和应用相关技术。同时提到未来可能引入YOLO算法进一步提升检测精度。
2025-10-13 20:23:37 878KB
1
数据集缺陷类型:划痕、凹痕、裂缝共1456张。 文件包括: Annotation:xml文件格式,共1456张。 images:所有缺陷图片jpg,1456张。 test:测试集图片jpg,100张。 val:验证集图片jpg,113张。 txt:标注图片YOLO格式的txt文件,1456个txt。 YOLO(You Only Look Once)是一种流行的实时目标检测系统,它通过单一神经网络直接从图像像素到边界框坐标和类别概率的映射来进行目标检测。YOLO的性能卓越,它可以在保证较高准确度的同时,实现快速的检测速度。这种特性使其在需要实时处理的应用场景中表现尤为出色,如自动驾驶、视频监控、工业检测等领域。 本数据集针对轴承缺陷检测而构建,包含1456张标注清晰的图像,这些图像涵盖了轴承在使用过程中可能出现的三种主要缺陷类型:划痕、凹痕和裂缝。这些缺陷类型对于轴承的性能和寿命有重要影响,能够被及时检测出来对于保障机械设备的稳定运行具有重要意义。 数据集中的图像全部以jpg格式存储,包括了标注图像和未标注图像。标注图像配有YOLO格式的标注信息,即xml文件和txt文件。xml文件格式用于描述图像中每个目标的位置和类别信息,而txt文件则包含了YOLO格式的标注数据,这种格式通常包含类别ID、目标中心点坐标以及目标的宽度和高度信息,使得YOLO模型能够直接读取并用于训练和预测。除此之外,数据集还划分为训练集、测试集和验证集。训练集用于模型的学习过程,测试集用于评估模型性能,验证集则用于模型调优和参数设置。 利用这样的数据集进行训练,目标检测模型能够学会识别和分类轴承缺陷。这对于提高轴承质量控制和预防性维护具有重要的实际应用价值。由于轴承是各种机械设备中的关键部件,因此缺陷检测的准确性直接关系到整个系统的安全性和可靠性。 值得注意的是,数据集的质量直接影响着模型训练的效果。因此,在收集数据时,要确保图像多样性、清晰度以及标注的准确性,以减少过拟合的风险,并提高模型的泛化能力。此外,合理的数据划分也是必要的,确保测试集和验证集能够有效地反映模型在未见数据上的表现,从而达到准确评估模型性能的目的。 本数据集为研究和开发基于YOLO的轴承缺陷检测模型提供了一个良好的起点。通过这个数据集,研究人员可以训练出更为精确和高效的检测模型,以应对工业生产中轴承缺陷检测的挑战,从而提高工业生产的自动化水平和产品的质量保证。
2025-10-13 15:10:26 158.67MB 目标检测 数据集 yolo
1
学生行为StudentBehavior​​Dataset 数 据 集共1810张学生课堂 图像,包括“ Focused 专注听讲”、“ Reading 阅读 ”、“ Hand Movement 手部动作 ”、 “ Head Down 低头 ”、 “ Looking Aside 侧视 ”和“ Sleeping 睡觉 ” 等六种 类型,每张图像 的大小为640像素x640 像素。图像数据集划分为1268 张图像作为训练集,361 张图像作为验证集,181张图像作为测试集。
2025-10-12 20:55:00 561.5MB 数据集
1
数据集名称:课堂行为检测数据集(基于YOLOv8的目标检测) 数据集描述: 本数据集面向基于 YOLOv8 的课堂行为目标检测任务,旨在实现对学生在教室内典型行为(如举手、睡觉、阅读、书写、使用手机、交谈、转头等)的精确识别与定位。数据采集自真实教学场景,涵盖多个时间段、角度与环境条件,具备良好的多样性、代表性和实际应用价值,适用于智慧教育、课堂行为分析、教学管理等多个场景。 数据特点: 标注类型:采用YOLO格式,提供边界框坐标与行为类别标注; 行为类别:覆盖典型课堂行为(支持自定义扩展类别); 图像数量:训练集-3192张; 分辨率:统一/多种分辨率(如有特殊说明可补充); 适用模型:适配YOLOv8及主流目标检测模型; 应用场景:智慧教室、教学管理、课堂行为分析、人机交互等。 应用价值: 该数据集可广泛应用于智慧教育领域,有助于构建基于计算机视觉的课堂行为分析系统,提升教学过程的可视化管理水平,实现课堂纪律自动评估、学生参与度分析等功能,助力教育信息化发展。
2025-10-11 17:17:41 265.08MB 目标检测 yolo 课堂行为
1
一、基础信息 数据集名称:发票目标检测数据集 图片数量: - 训练集:57张图片 - 验证集:8张图片 - 测试集:6张图片 分类类别: Invoice(发票):专注于文档图像中发票区域的检测与定位。 标注格式: YOLO格式,包含边界框坐标,适用于目标检测任务。 数据格式:JPEG图片,来源于真实文档扫描场景。 二、适用场景 财务文档自动化处理: 构建AI模型自动检测和定位图像中的发票区域,适用于报销系统、电子会计软件等场景,提升票据处理效率。 物流与供应链管理: 集成到文档扫描应用中,快速识别货运单据中的发票信息,优化仓储和运输流程。 OCR预处理系统: 作为前置模块,精准定位发票区域后提取关键文本(如金额、日期),增强光学字符识别的准确性。 教育与实践工具: 用于计算机视觉教学,演示目标检测在文档处理中的实际应用,适合算法入门训练。 三、数据集优势 标注精准与一致性: 所有图片统一采用YOLO格式标注边界框,确保发票定位的精确性,减少模型训练噪声。 任务适配性强: 专注于单一类别(发票)检测,数据高度聚焦,可直接用于目标检测算法(如YOLO系列)的快速部署。 实际场景覆盖: 数据源于多样化发票样本,涵盖不同版式和背景,增强模型在真实文档环境中的泛化能力。 易用性与兼容性: 标注格式兼容主流深度学习框架(如PyTorch、TensorFlow),支持即插即用,降低开发门槛。
2025-10-09 15:00:53 1.34MB 目标检测 yolo
1
红外气体泄漏检测技术是近年来快速发展的一门技术,它广泛应用于石油化工、煤矿安全、环境监测等多个领域。有效的气体泄漏检测对于确保工业生产安全、预防环境污染和保障公众健康具有至关重要的作用。随着计算机视觉技术的进步,基于图像处理的目标检测方法在气体泄漏检测中占据了越来越重要的地位。 在目标检测领域,深度学习模型尤其是卷积神经网络(CNN)已经证明了其卓越的性能。YOLO(You Only Look Once)作为一种实时目标检测算法,因为其检测速度快、准确性高的特点,被广泛应用于各种视觉检测任务中。YOLO算法的模型可以直接从图像数据中学习特征,并进行快速的目标定位和识别。 文档中提到的“红外气体泄漏数据集1612张YOLO+VOC格式”是一个专门为红外图像中的气体泄漏目标检测任务设计的数据集。VOC格式是由Pascal Visual Object Classes Challenge所定义的一种标准格式,广泛用于目标检测和图像分割任务的数据标注。该数据集包含了1612张红外图像,每张图像都对应一个标注文件,标注文件以XML格式存储,提供了精确的气体泄漏位置信息。此外,还包含TXT文件用于YOLO格式的标注,这些标注文件包含了用于训练和测试YOLO模型的详细标注信息。 该数据集中的图片被保存在名为JPEGImages的文件夹中,标注的矩形框位置信息存储在Annotations文件夹下的XML文件中,而YOLO格式的标注信息则存储于labels文件夹下的TXT文件中。数据集包含的标签种类数为1,标签名称为“gas-leak”,表明所有标注的对象均为气体泄漏。数据集中的气体泄漏标注框数共计1692个,总框数与气体泄漏标注框数一致,说明数据集中每张图片可能有一个或多个气体泄漏标注框。 数据集中的图片清晰度达到高分辨率的标准,且数据集来源标注为“星码数据城”,为特定来源的数据集。需要注意的是,文档中特别声明了本数据集不对训练出的模型或者权重文件的精度做出任何保证,这意味着数据集本身仅提供了准确且合理的标注信息,模型训练的效果将取决于使用数据集的算法和实验设计。 此外,数据集的图片没有经过增强处理,因此在训练深度学习模型时可能需要对图像进行进一步的增强操作以提高模型的泛化能力。标签的形状为矩形框,适合于目标检测识别任务。 数据集的总数量、标注方式、格式细节、清晰度、来源说明和使用注意事项都为研究人员提供了详细的了解,为他们进行气体泄漏检测研究提供了宝贵的数据资源。通过使用此数据集,研究人员可以训练出能够在实际场景中快速准确地检测气体泄漏的智能系统。
2025-10-04 20:11:36 2.82MB 数据集
1
芒果叶病害数据集VOC+YOLO格式4000张5类别文档,是一个包含4000张芒果叶病害图片及其相应标注信息的数据集,该数据集采用Pascal VOC格式和YOLO格式相结合的方式组织数据。每个图片都配有一个对应的VOC格式的xml文件,用以详细描述图片中各个对象的位置信息以及类别信息;同时,也有YOLO格式的txt文件,用于YOLO系列模型的训练。该数据集包含5个病害类别,分别是炭疽病(anthracnose)、细菌性癌肿(bacterial_canker)、切叶象甲(cutting_weevil)、凋萎病(die_back)、飞蛾幼虫(gall_midge)、健康叶(healthy)、粉霉病(powdery_mildew)、煤烟病(sooty_mould),每个类别都有500个标注框,合计4000个标注框。数据集的图片数量和标注数量都是4000,标注的类别数目为8。 数据集的使用说明指出,该数据集的图片文件格式为jpg,标注工具为labelImg,其标注规则是通过在病害区域绘制矩形框来标注。数据集的组织方式便于用户根据需要应用于不同类型的计算机视觉模型,特别是目标检测模型的训练。该文档还特别强调,虽然数据集提供了准确且合理的标注,但数据集制作者不对使用这些数据训练出的模型的精度或性能提供任何保证。 该数据集适用于计算机视觉研究人员和工程师,尤其是那些专注于农业病害检测领域的专家。通过使用这个数据集,可以训练和评估模型在识别和分类芒果叶病害方面的性能,有助于农业病害早期诊断和精确农业的实施,对提高农作物的健康状况和产量有重要的实际意义。数据集的发布,为相关领域的研究和开发工作提供了便利,有助于推动智能农业技术的发展。
2025-10-01 00:33:39 733KB 数据集
1
蚊子检测系统是基于计算机视觉和机器学习技术发展起来的应用,其主要目的是为了快速准确地识别和定位蚊子的位置,对于控制蚊虫传播的疾病有着重要的意义。本系统采用了改进后的YOLOV8模型进行训练,YOLOV8模型是YOLO(You Only Look Once)系列的最新版本,它是一类流行的目标检测算法,以其高效率和准确率在实时对象检测领域受到广泛关注。 该系统的源码分享中包含了9900张蚊子图像数据集,这些数据集是模型训练的基础。在训练过程中,使用了大规模的图像数据,这对于提高模型的泛化能力和检测精度至关重要。数据集的收集和标注是一个繁琐但必不可少的步骤,它需要大量的人力和时间投入。数据集的质量直接影响到最终模型的表现,因此在数据准备阶段需要进行细致的图像预处理和标注工作,以确保每个图像中的蚊子都能被清晰地识别和定位。 源码分享中还包含了YOLOV8模型的优化训练代码。模型优化是提升检测性能的关键步骤,它涉及到网络结构的调整、损失函数的设计、超参数的优化等众多方面。为了获得最佳的检测效果,开发人员会对模型进行细致的微调,确保模型能在不同的环境和条件下稳定运行。代码中可能会包含各种实验性的尝试,例如改变卷积层的数量、使用不同的激活函数或者调整学习率等。 在功能上,本蚊子检测系统不仅支持目标检测,还支持实例分割模型。目标检测可以识别图像中蚊子的位置并给出边界框,而实例分割则更进一步,能够精确地描绘出蚊子的轮廓,这对于蚊子的准确识别和分类具有更高的实用价值。 系统还适配了图片识别、视频识别以及摄像头实时识别功能。这意味着该系统不仅能够处理静态图片中的蚊子检测任务,还能够对视频流进行连续的分析,实时地从摄像头捕捉的视频中检测出蚊子。这种实时监测的能力对于公共卫生安全监控尤为重要,尤其是在户外或公共区域的蚊子密度监测中。 该系统提供了一个名为W的压缩文件,方便用户下载使用。这个压缩文件可能包含了上述提及的所有内容,包括数据集、训练代码和模型文件等,使得用户能够轻松获得整个系统,并进行进一步的研究和开发。 基于改进YOLOV8的蚊子检测系统代表了目标检测技术在实际应用中的一个新进展。它通过集成大量的图像数据和先进的模型优化,为科研人员和公共卫生工作者提供了一个强有力的工具,有助于改善蚊子控制的策略,提升监测效率和准确性,进而为人类健康安全提供保障。
2025-09-29 15:50:32 2.26MB
1