目前,许多大学及科研单位都进行了开关电源EMI(Electromagnetic Interference)的研究,他们中有些从EMI产生的机理出发,有些从EMI 产生的影响出发,都提出了许多实用有价值的方案。这里分析与比较了几种有效的方案,并为开关电源EMI 的抑制措施提出新的参考建议。
2025-11-24 20:47:50 193KB 开关电源 技术应用
1
多层网络是一种复杂系统建模的方式,它由多层或多个层次组成,每一层包含不同的节点和连接,可以表示不同的信息或网络关系。关键节点在多层网络中起着至关重要的作用,它们往往是网络功能实现、信息流动和网络结构稳定的关键所在。智能识别技术则致力于通过先进的算法和模型识别这些关键节点,对于网络分析、优化甚至控制都有重要意义。 研究背景与意义部分通常会讨论多层网络和关键节点识别技术的重要性,以及这些技术在现实世界中的应用场景,比如社交网络分析、生物网络研究、供应链管理等。这有助于理解为什么要发展和应用这些技术。 多层网络的定义与特点、模型分类以及应用领域是研究的基础内容。定义与特点部分可能会解释多层网络的基本概念,而模型分类则会涉及不同类型的多层网络,如双边网络、多模态网络等。应用领域则说明多层网络在不同行业中的具体用途。 关键节点的定义及其重要性强调了关键节点在多层网络中的核心地位。常见关键节点识别方法则介绍了目前用于识别这些节点的技术,比如基于图论的方法、基于统计的方法和基于机器学习的方法等。每种方法都有其优缺点,适用于不同类型的网络和需求。技术挑战部分则描述了在识别关键节点过程中遇到的问题,如高维性、稀疏性和动态性等。 在多层网络中识别关键节点是研究的重点之一。这涉及到多层网络节点重要性分析方法、基于图论的关键节点识别算法和基于机器学习的关键节点识别模型。这些内容对于理解如何从复杂的多层网络结构中提取关键信息至关重要。 智能识别技术的研究进展则聚焦于最新的发展动态,包括智能优化算法、深度学习技术和强化学习在关键节点识别中的应用。智能优化算法,如遗传算法、粒子群优化等,能够帮助找到网络中最有影响的关键节点。深度学习技术,尤其是卷积神经网络、循环神经网络等,已经在处理复杂网络数据方面显示出巨大的潜力。强化学习则在动态识别关键节点方面提供了新的思路和方法。 实验设计与结果分析部分会展示如何通过实验来验证关键节点识别技术的有效性。这可能包括数据集的选择和处理、实验方案的设计以及实验结果的对比分析。通过这些实验,研究者可以评估不同方法和技术的性能,为后续的研究提供依据。 结论与展望部分对研究成果进行总结,并指出当前研究中存在的问题与不足。同时,这部分也提出了未来研究的方向,可能包括如何改进现有算法、如何处理更大规模的网络以及如何应对更复杂的网络动态变化等。 多层网络与关键节点的智能识别技术研究不仅是理论上的探讨,还紧密联系着实际应用。通过这些技术的应用,可以更好地理解和优化现实世界中的复杂网络,为相关领域带来革新。
2025-11-24 20:04:02 108KB 人工智能 AI
1
开关电源是电子设备中常见的电力转换设备,其电磁干扰(EMI)的控制对于保障系统稳定运行至关重要。EMI干扰源主要来自于开关电源内部的功率开关管、整流二极管、高频变压器等元件,以及外部环境如电网波动、雷击和外界电磁辐射。在开关电源的设计过程中,减少这些干扰源产生的干扰,以及提高设备的电磁兼容性(EMC),是电磁干扰设计的核心任务。 在开关电源的EMI设计中,有以下几个方面需要特别关注: 1. 开关电源的EMI源 - 功率开关管是电场和磁场耦合的主要干扰源,因为其工作在高速开关状态,伴随着快速变化的电压和电流。 - 高频变压器主要由于漏感引起的快速电流变化,造成磁场耦合的干扰。 - 整流二极管的反向恢复特性会产生瞬间高 dv/dt 的电压尖峰,形成电磁干扰。 - PCB作为干扰源的耦合通道,其设计质量直接影响EMI抑制效果。 2. 开关电源EMI传输通道分类 - 传导干扰包括容性耦合、感性耦合和电阻耦合。 - 辐射干扰可以将电路元件假设为天线,通过电偶极子和磁偶极子理论来分析其电磁波的辐射。 3. 开关电源EMI抑制的9大措施 - 减小 dv/dt 和 di/dt 的峰值和斜率来降低干扰。 - 合理应用压敏电阻以降低浪涌电压。 - 使用阻尼网络抑制过冲。 - 采用软恢复特性的二极管减少高频EMI。 - 应用有源功率因数校正和谐波校正技术。 - 采用合理设计的电源线滤波器。 - 合理的接地处理和屏蔽措施。 - 进行合理的PCB设计。 4. 高频变压器漏感的控制 - 选择合适的磁芯材料和匝数来降低漏感。 - 减小绕组间的绝缘层厚度,使用黄金薄膜等材料以提高击穿电压。 - 提高绕组间的耦合度,减少漏感。 5. 高频变压器的屏蔽 - 采用铜箔屏蔽带来减少高频变压器的漏磁场。 - 将屏蔽带接地,形成对漏磁场的短路环以抑制泄漏。 - 为避免高频变压器噪声,需要采取加固措施,如使用环氧树脂粘接磁心、用玻璃珠胶合剂固定磁心等。 开关电源的EMI设计必须综合考虑各种干扰源和传播途径,通过合理设计元件、布局,以及利用滤波、屏蔽、接地等措施,最大程度地降低EMI的影响,从而提高电源系统的稳定性和可靠性。
1
开关电源的电磁干扰(EMI)控制技术是电子工程师必须掌握的关键技能之一。电磁干扰可造成电子设备性能下降,严重时可导致设备无法正常工作。本文将从开关电源EMI的产生机理入手,探讨一系列抑制EMI的策略,以提高电源的电磁兼容性(EMC)。 开关电源的工作原理是将工频交流电整流为直流电,然后逆变为高频交流电,通过变压器隔离并调整电压,最终整流滤波输出稳定的直流电压。功率半导体器件,如三极管、二极管,是开关电源中的核心部件,它们在微秒量级内完成开闭动作。在这过程中,电流变化剧烈,产生射频能量,成为干扰源。高频变压器的漏感和输出二极管的反向恢复电流也会产生干扰。由于开关电源工作频率高,其分布电容不能忽略,这些分布电容在高频时会通过散热片等路径形成共模干扰。 EMI由三个基本要素组成:干扰源、耦合途径和敏感设备。为了控制EMI,必须从这三个方面入手,主要措施包括抑制干扰源、切断耦合途径以及提高敏感设备对干扰的抵抗能力。开关电源的EMI控制技术主要包括滤波技术、屏蔽技术、密封技术和接地技术。 EMI干扰可分为传导干扰和辐射干扰。传导干扰主要通过电源线或信号线传播,其频率范围宽,可达10kHz至30MHz。抑制传导干扰的方法根据不同的频段采取不同的策略。在10kHz至150kHz范围,通常使用LC滤波器解决常态干扰问题;在150kHz至10MHz范围,主要采用共模抑制滤波器来减少共模干扰;而对于高于10MHz的频段,则需要改进滤波器的结构和增加电磁屏蔽。 交流输入EMI滤波器是一种常用的抑制技术,用于抑制电源线上的共模干扰和差模干扰。滤波器中的差模电容用于短路差模干扰电流,而接地电容则用于短路共模干扰电流。共模扼流圈通过磁耦合抵消差模干扰电流,并对共模干扰电流呈现较大电感,从而衰减共模干扰信号。 此外,改善开关电源中功率器件的开关波形也是减少EMI的有效手段。例如,RCD浪涌电压吸收回路能有效减小开关管或二极管在开通和关断过程中的浪涌电压,降低因变压器漏感和线路电感引起的EMI。 在实际应用中,开关电源EMI控制技术的选择需根据电源的具体工作环境和电磁兼容性要求来确定。通过采用一系列的EMI控制策略,可以在确保开关电源性能的同时,减少对周围电磁环境的影响,从而提高整个系统的稳定性和可靠性。
1
基于李特文《齿轮几何学与啮合理论》的齿轮技术matlab程序实现与传动特性解析,齿轮、行星齿轮、端面齿轮、斜齿轮、非圆齿轮、圆弧齿轮……啮合理论、啮合原理、齿面求解、传动特性、接触分析tca、传动误差等技术matlab程序实现。 参照李特文《齿轮几何学与啮合理论》 ,核心关键词:齿轮; 行星齿轮; 端面齿轮; 斜齿轮; 非圆齿轮; 圆弧齿轮; 啮合理论; 啮合原理; 齿面求解; 传动特性; 接触分析TCA; 传动误差; 技术; MATLAB程序实现; 李特文《齿轮几何学与啮合理论》。,基于齿轮技术的啮合原理与传动特性Matlab实现研究
2025-11-24 18:04:02 665KB 柔性数组
1
内容概要:本文详细介绍了不同类型的齿轮(如行星齿轮、端面齿轮、斜齿轮、非圆齿轮、圆弧齿轮等)及其啮合理论和传动特性。重点探讨了齿轮的啮合原理、齿面求解、接触分析(TCA)、传动误差等关键技术,并展示了如何使用MATLAB进行这些技术的具体实现。通过建立齿轮的数学模型,MATLAB可以帮助计算齿面形状和位置,分析啮合过程中的接触状态,求解齿面方程,评估传动误差,从而优化齿轮设计。文中还引用了李特文的经典著作《齿轮几何学与啮合理论》,为读者提供了丰富的理论支持和技术指导。 适合人群:机械工程领域的研究人员、工程师以及对齿轮设计感兴趣的高校学生。 使用场景及目标:适用于需要深入了解齿轮设计原理并掌握MATLAB编程技能的人群。目标是帮助读者理解齿轮的复杂性和设计要点,提升齿轮设计的效率和准确性。 其他说明:本文不仅涵盖了齿轮的基础理论,还结合了实际案例和MATLAB程序实现,有助于读者将理论应用于实践。
2025-11-24 18:02:48 1008KB MATLAB 传动特性
1
概率整形技术(Probability Shaping, PS)是数字通信中通过优化信号星座点概率分布以提升传输性能的关键技术。相较于传统均匀分布调制(如QAM、PSK),概率整形采用非均匀分布(如高斯分布),使低能量星座点出现概率更高,从而逼近香农极限、优化功率效率,并兼容现有调制编码方案。其核心流程包括分布匹配、调制、传输及解调恢复,广泛应用于高速光通信(5G/6G承载网、数据中心互联)。文中还通过MATLAB仿真对比了均匀与非均匀分布的16QAM星座图性能,展示了指数分布概率整形的实现方法与优势。 概率整形技术是一种数字通信领域的先进技术,其工作原理是通过调整信号星座点的概率分布来提高传输性能。在传统的数字通信系统中,常用的调制方式如QAM(正交幅度调制)和PSK(相移键控)通常采用均匀分布的星座点。然而,概率整形技术则采用非均匀分布,尤其是高斯分布,来使低能量星座点出现的概率更高,这样的设计可以更接近香农极限,从而优化功率效率。 香农极限是通信领域的理论极限,代表了在给定的通信信道上所能达到的最大信息传输速率。概率整形技术通过非均匀分布的方式,使得信道的利用率更高,这在高速光通信、5G和6G承载网、以及数据中心互联等高速数据传输领域具有非常重要的应用价值。 概率整形技术的核心流程主要包括分布匹配、调制、传输和解调恢复四个步骤。分布匹配是将要传输的数据比特映射到特定的概率分布上;调制是将匹配后的数据转换为信号星座点;传输则是将信号通过物理介质发送出去;最后在接收端进行解调恢复,重新得到原始数据。 在实际应用中,概率整形技术可以与现有的调制编码方案兼容,这意味着在不改变现有通信系统架构的前提下,通过引入概率整形技术就能提升系统的性能。MATLAB仿真工具通常用于验证这一技术的效果。在文中提及的仿真案例中,通过对比均匀与非均匀分布的16QAM星座图性能,清晰地展示了概率整形技术的实现方法和它所带来的性能优势。 具体来说,16QAM星座图通过指数分布的概率整形,可以更有效地利用信道,减少信号间的干扰,提高信噪比,从而实现更高的数据传输速率和更低的错误率。这种技术使得在高信噪比条件下,系统性能得到显著提升,同时也能在低信噪比条件下,通过减少星座点间距离的差异来减少错误率。 在代码实现方面,概率整形技术可以通过特定的软件包和源码包来实现,这些代码包提供了实现概率整形技术所需的算法和数据处理功能。开发者可以通过这些软件工具包来进一步研究和开发概率整形技术,以适应不同的应用场景和技术需求。 在数字通信领域,由于数据传输需求的快速增长,概率整形技术作为一种新兴技术,能够显著提升传输效率和数据传输速率,因此它在高速数据通信领域中的应用前景十分广阔。
2025-11-24 17:39:39 2.44MB 软件开发 源码
1
开关电源是现代电子设备中不可或缺的一部分,它负责将交流电压转换为直流电压,并保证电压的稳定性。然而,在开关电源工作过程中,由于高速开关动作以及整流、滤波等环节,会产生电磁干扰(EMI),这些干扰可能会对电子设备的正常工作造成影响。本文将详细分享关于开关电源EMI设计方面的经验,包括EMI干扰源、干扰传输通道、EMI抑制措施以及高频变压器的设计和屏蔽。 开关电源EMI的主要干扰源包括功率开关管、整流二极管和高频变压器。功率开关管在开关动作中产生很大的dv/dt和di/dt,即电压和电流的变化率,这些快速的变化是电磁干扰的主要来源。整流二极管的反向恢复特性也会产生EMI,特别是在高频工作情况下,反向恢复电流的断续会产生很高的电压变化率,从而产生强电磁干扰。高频变压器由于漏感问题,当功率开关管关断时会产生尖峰电压,这也是EMI的一个来源。而PCB设计对于抑制这些干扰源至关重要,因为PCB是干扰信号的耦合通道,其设计的优劣直接影响EMI的抑制效果。 开关电源EMI的传输通道可以分为传导干扰和辐射干扰两种。传导干扰包括容性耦合、感性耦合和电阻耦合。容性耦合通常发生在具有一定电容性的元件之间,感性耦合则是由于互感效应,而电阻耦合则涉及到公共阻抗。辐射干扰则是通过空间传播的电磁波,可以将干扰源的元器件和导线假设为天线,分析其辐射特性。没有屏蔽的情况下,电磁波会通过空气传输,而在有屏蔽的情况下,则需要考虑屏蔽体的缝隙和孔洞,用泄漏场的数学模型进行分析处理。 为了抑制EMI,设计中可以采取九种主要措施:第一,减小dv/dt和di/dt,降低它们的峰值并减缓变化斜率;第二,合理应用压敏电阻来降低浪涌电压;第三,采用阻尼网络抑制过冲;第四,使用具有软恢复特性的二极管,以降低高频段的EMI;第五,采用有源功率因数校正以及其他谐波校正技术;第六,设计合理的电源线滤波器;第七,进行合理的接地处理;第八,采取有效的屏蔽措施;第九,进行合理的PCB设计。通过这些措施,可以有效地减少开关电源对外界和自身产生的电磁干扰。 高频变压器的设计同样对抑制EMI至关重要。控制高频变压器的漏感是解决其EMI问题的首要任务。控制漏感的措施包括选择合适的磁芯以降低漏感,减小绕组间的绝缘层厚度,并且提高绕组之间的耦合度。在高频变压器的屏蔽方面,可以使用铜箔制成的屏蔽带,将其绕在变压器外部并接地,这样可以抑制漏磁场的泄漏。为了防止由于高频变压器磁心相对位移而产生的噪声,可以使用环氧树脂或“玻璃珠”胶合剂对磁心进行加固。 开关电源的设计中需要对EMI问题给予高度重视,通过合理的设计和选择适当的元件,可以有效地抑制EMI。这些知识和经验将有助于设计出既高效又符合EMC标准的开关电源。
2025-11-24 16:55:58 67KB 开关电源 技术应用
1
内容概要:本文档为《2025三届人工智能工程技术赛项-样题》,涵盖自然语言处理、计算机视觉和综合工程技术三大模块的竞赛任务。参赛者需在指定.ipynb文件中完成代码编写,涉及新闻文本分类、对抗样本评测与模型加固、非均衡图像分类、目标检测(DETR模型)、开放词汇检测等任务,重点考察数据预处理、模型构建、训练优化、结果可视化及评估能力。要求选手掌握PyTorch、Transformer、ResNet、DETR、CLIP、SAM等框架与模型的应用,并完成相应代码实现与结果截图提交。 适合人群:具备一定人工智能基础,熟悉深度学习框架(如PyTorch)和常用模型(如CNN、Transformer)的高校学生或从业人员,具备1年以上AI开发经验者更佳;适合备战技能竞赛的技术人员。 使用场景及目标:①用于全国技能大赛人工智能赛项的备赛训练;②提升在NLP、CV及多模态任务中的工程实现能力;③掌握对抗样本防御、非均衡分类、目标检测优化、开放词汇检测等前沿技术的实际应用;④熟悉从数据处理到模型部署的全流程开发规范。; 阅读建议:建议结合实际代码环境边运行边学习,重点关注各模块中需补全的关键代码逻辑(如标签平滑、mixup增强、GIoU计算、匈牙利匹配、KL蒸馏等),并严格按照任务要求保存输出结果与模型文件,确保符合评分规范。
1
内容概要:本文详细介绍了惯性导航系统的实现技术和常见问题解决方案。首先讨论了粗对准和精对准算法,分别展示了基于加速度计和磁力计的粗对准Python代码以及Kalman滤波用于精对准的状态方程。接着深入探讨了姿态解算中的四元数法及其更新方法,强调了归一化操作的重要性。文中还涉及了动态仿真的划桨误差补偿、温度补偿、安装误差补偿等关键技术,并提供了具体的代码实现。此外,文章讨论了Kalman滤波的应用,特别是在组合导航中的参数选择和调优技巧。最后,作者分享了一些实际工程项目中的经验和教训,如高斯噪声仿真、艾伦方差分析和自适应滤波等。 适合人群:从事惯性导航系统研究和开发的技术人员,尤其是有一定编程基础并希望深入了解惯性导航算法实现的人群。 使用场景及目标:适用于惯性导航系统的设计、开发和优化过程中,帮助开发者理解和解决常见的技术难题,提高系统的精度和可靠性。 其他说明:本文不仅提供理论知识,还附带了大量的代码片段和实践经验,有助于读者更好地掌握惯性导航的实际应用。
2025-11-24 16:02:38 205KB
1